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AN OPERATTONAL, UNIFICATION OF FINITE DIFFERENCE METHODS
FOR THE NUMERICAL INTEGRATTON OF ORDINARY
DIFFERENTTAL EQUATIONS

By Harvard Lomax

Ames Research Center
SUMMARY

One purpose of this report is to present a mathematical procedure which
can be used to study and compare various numerical methods for integrating
ordinary differential equations. This procedure is relatively simple, mathe-
matically rigorous, and of such a nature that matters of interest in digital
computations, such as machine memory and running time, can be weighed against
the accuracy and stability provided by the method under consideration.
Briefly, the procedure is as follows:

(1) Pind a single differential equation that is sufficiently represen-
tative (this is fully defined in the report) of an arbitrary number
of nonhomogeneous, linear, ordinary differential equations with
constant coefficients.

(2) Solve this differential equation exactly.
(3) Choose any given numerical method, use it -- in its entirety -- to

reduce the differential equation to difference equations, and, by
means of operational technigues, solve the latter exactly.

(4) Study and compare the results of (2) and (3).

Conceptually there is nothing new in this procedure, but the particular
development presented in this report does not appear to have been carried out
before.

Another purpose is to use the procedure Jjust described to analyze a
variety of numerical methods, ranging from classical, predictor-corrector
systems to Runge-Kutta techniques and including various combinations of the
two.

INTRODUCTION

At present a large body of literature is devoted to the development and
presentation of methods for integrating ordinary differential equations with
given Iinitial conditions. These methods are based on local polynomial
approximation and are commonly divided into two classes, predictor-corrector
methods and Runge-Kutta methods. The former are, as generally presented, not



self-starting and use a fixed interval, or step, at which the function and
its derivative are evaluated as the integration proceeds. The latter are
self-starting and the interval of evaluation may vary from step to step. A
current trend is to combine these two classes. The resulting methods are
variously referred to as hybrid, generalized predictor-corrector, and
combined. The latter designation is used herein.

In this report a mathematical procedure, outlined in the summary, is
presented which provides us with the capability of comparing these methods as
they apply to simultaneous, linear, ordinary differential equations with
constant coefficients. It is quite true that linear equations with constant
coefficients are an extremely special set of all possible differential equa-
tions, and, in fact, the numerical methods being discussed here are rarely
used to solve them. However, such equations can be solved analytically both
as differential equations, and as difference equations when transformed to
the latter by a linear numerical scheme. The conclusion regarding the accu-
racy and stability of a numerical method when studied in this way is, there-
fore, precise. We need then only to defend the reasonable hypothesis that a
numerical method which, on some given basis, is unguestionably inferior in
solving linear cases, is, on the same basis, also inferior, in general, for
use in solving nonlinear ones.

When studied by the above procedure, all polynomial methods (known to
the author) proposed for integrating ordinary differential equations fall
into a smoothly connected system. By "smoothly connected," we mean, for
example, that there is no sharp dividing line between predictor-corrector and
Runge-Kutta methods. In fact, the standard, fourth-order, Runge-Kutta method
is, in predictor-corrector terminology, a method composed of the successive
application of an Euler predictor, an Euler corrector, a Nystrom predictor,
and a Milne corrector. As such statements indicate, one of the principal dif-
ficulties that can arise when different schools of thought are brought
together is the construction of a consistent and precise terminology. And
the most troublesome problem in this area is to guard against conclusions
based on implication. In particular, such a difficulty arises in the use of
the term "step number" when combined methods are discussed. This is examined

in the next paragraph.

A1l numerical methods of the type being considered are cyclic in appli-
catlon; that is, for a fixed reference value of the independent variable,
a pattern of cglculations is performed (solving equations, evaluating deriv-
atives, estimating errors, etc.). At the end of these calculations the
value of the function has been determined at a point advanced by some inter-
val. The independent variable is re-referenced ahead by another interval and
the identical pattern of calculations is repeated. These cycles are con-
tinued indefinitely. The interval involved is referred to as the step size.
The number of locations, spaced by a fixed value of this interval, at which
the function and/or its derivative are retained for use in the next cycle or
pattern of computations, corresponds to the step number of the given method.
The definitions of step size and step number when made in this way hold for
these terms as they are generally used in the literature for both combined
and uncombined methods. In predictor-corrector schemes this step number is a
fundamental parameter that can be, and is, used to connect the stability and
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accuracy of a given method. In fact, in a well known theorem, Dahlquist
states that no stable, predictor-corrector method with a step number, k, can
give a local polynomial approximation of order %k+2 if k 1is odd, or of
order k+3 if k is even. However, in Runge-Kutta methods, or methods that
combine the Runge-Kutta and predictor-corrector concepts, this step number is
not connected in any way with stability. Thus, stable combined methods having
any value for the step number (including one) can be constructed that will
fit local polynomials of any order. This implies that combined methods are
greatly superior to uncombined ones. But, in facti for fixed values of
machine memory and running time, the maximum order~ of a local polynomial fit
appears to be the same for stable methods combined or uncombined.

At the beginning of the report certain basic terms are defined so as to
make the subsequent discussion more precise. Then the approach to be used in
the analysis is described and it is shown that a single representative dif-
ferential equation can be used to study the accuracy and stability of
difference-differential approximations as they apply to the analysis of simul-
taneous differential equations. An attempt is made to classify various class-
ical and modern numerical methods according to three categories:

1) The number of iterations per cycle of computation

2) Whether they are complete or incomplete

3) Whether they are combined or uncombined.
Some general procedures falling into certain combinations of these categories
are analyzed in detail. Finally, the operational form of a difference-

differential equation is defined and its implications with regard to the
study of numerical methods is discussed.

SYMBOLS
A constant in representative equation (See eq. (37).)
DE(E) see equation (52)
erp error of a numerical method in terms of local polynomial approxi-
mation_
ery, error of a numerical method in calculating the particular solution

of the representative equation (37) (See egs. (57) and (63).)

er) error of a numerical method in calculating the complementary solu-
tion of the representative equation (37) (See egs. (68) and
(71).)

1The magnitﬁde of the leading error term found by means of a Taylor
series expansion is lowest for the combined methods, however.
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difference operator (See eq. (9).)
computational step size (See eq. (123).)

representational step size (See definition (2).)

index used in expressing difference-differential equations

(See eq. (3).)
kK + 1 - j

step number in a predictor or corrector

coefficients in the operational form (See, e.g., eqs.

(51).)
reference step location
see equation (52)

coefficients in the operational form (See, e.g.,
egs. (51).)

dependent variables

du = dw
ax ’ ax

independent variable

coefficients of dependent variable in difference-
differential equations

coefficients of derivative of dependent variable in
differential equations

representative eigenvalue, that is, coefficient of u
representative differential equation (37)

spurious roots of difference equation

principal root of difference equation

induced stability boundary (See eq. (73).)
representative maximum frequency (See eq. (37).)

eigenvalues of simultaneous ordinary differential
equations (11)

in



DEFINITION OF TERMS

Some of the following expressions are in common usage but vary slightly
in meaning with different authors. The definitions given below are intended
for this report to simplify and make more precise the subsequent discussion.

Difference~-differential equations:

ul Let the dependent variable u be a
function of the independent variable
x. Let u' represent the derivative
of u with respect to x and desig-
nate x, by nh and u(x,) by upy
vhere n is an integer and h 1is a
constant. Then equations which

Un

e cen _, relate Upyk+1r-j, Untk+r-j and
0] [ n n+| ntk-1 n+k x .
Xn Xn+k+1-j where j =1, 2, . . .,
k + 1 are called difference-
Sketch (a) differential equations with step

number k.

Predictor: Any difference-differential equation relating un+k tO
values of u and u' at previous steps. Thus, for a k-step predictor

Uk = Tunsker-3; Uhtlerl-32 Fntk+1-3)s  J =2, 3, « - ., k+ 1

A predictor is an explicit formula that extrapolates given data.

Corrector: Any difference-differential equation relating Wik to the
values of u and u' at n + k as well as to those at previous steps.
Thus, for a k-step corrector

Unt+k = f(un+k+1—j: uﬁ+k+l-j: Xn+k+:|_—j) ’ J=212, ..., k+1

In this form the corrector is an implicit formula. In practice the
values of u and u' in the arguments-of f are generally those
determined by predictors or previous correctors.

Tteration: In the numerical solution of ordinary differential equations
the repeated calculation of the right-hand side of equations having the

form
u' = F(x, u) (1a)
or for multiple equations
]
up = Fi(x, w, ug, - . )
ué = FZ(X: Ui, Ug, « « )
(1b)



is necessitated. In this report we refer to every such evaluation (i.e.,
explicit calculation of the derivatives using the differential equations)
as an iteration. By this definition, methods composed only of predictors
require one iteration per step. Methods using one predictor followed by
one corrector require two iterations per step, etc.

Reference step: We will inspect a wide varieby of methods in which the
words "step size," by common usage, have different implications. In
order to have a parameter by means of which all methods can be compared
on a common basis, the term "reference step" is introduced and designated
by the symbol H.

H = the increment in x that a solution (2)
is advanced by two iterations

In many applications the numerical calculations necessary to evaluate
the derivatives, Fj(x,u) in equations (1), are extremely complicated and
time consuming. In such applications, if errors are referenced to K,
the accuracy of variocus numerical methods can be compared with the assur-
ance that the total machine running time will be very nearly the same.
Since most methods in practical use employ a predictor followed by Jjust
one corrector, two iterations were chosen for a base (rather than one)

so that H would coincide with the most commonly used error reference.
Both® h, the computational step size, and H, the reference step size,
are used in error terms in the following analysis.

Cycle of computaticn: All the calculations and logic reguired to advance
the data while n refers to the same location. A cycle 1s completed
wvhen all the dependent variables and their derivatives at n + k have
been calculated as accurately as the chosen method permits and
preparation for stepping ahead commences.

Family: Any combination of values of wu, u' and other families at
n+k,n+k -1, . . ., n that is formulated and used in a cycle of
computation. A family may or may not be saved for future cycles of com-
putation. In this report a family is usually designated by a super-
script, and a predictor always generates the first family. A derivative
belongs to that family of u wused in its calculation; that is,

u(i)t = F<%,u(i)>

Final family: The new values of u and u' last evaluated in a cycle
of computation. The superscript is always omitted from the final family
of u (its distinguishing feature) and sometimes from the final family
of u' (see the definitions below of complete and incomplete methods).

equality is brought about, the reference step H 1is undefined.
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Memory in a k-step method: All those values of u, u' and other
families (if there are any) that are used but do not change during one
cycle of computation.

Incomplete methods: Methods for which the dependent variable and its
derivative are members of the same final family. That is, after the
dependent variable is evaluated for the last time at a given point, it
is used to calculate the derivative at the same point. Most "conven-
tional"™ methods (Hammings's, Milne's, etc.) are incomplete. In this
case the superscript is omitted from the final Tamily representing the
derivative.

Complete methods: Methods in which the derivative of at least one final
family is never evaluated. They are referred to as complete because

they most completely fill the matrix which determines the operational
form.

Combined methods: Methods that combine the concepts usually separately
designated as predictor-corrector and Runge-Kutta. A combined method
can be thought of either as a predictor-corrector method without equal
spacing, or a Runge-Kutta method with memory. Combined methods can be
either complete or incomplete.

Fundamental family: One that is computed using a memory composed only
of final families.

Embedded polynomial: The highest order polynomial which 1s an exact
solution to a given set of difference-differential equations.

FUNDAMENTALS

Difference-Differential Equatiocns
Two of the simplest difference-differential equations are

un+1 - u, - huy =0
and

Un+1 = Up - % h<;ﬁ+1 + ug> =0

and are referred to as the Euler and modified Euler equations, respectively.
These and all such formulas presented in books on numerical analysis are
special forms of the general, linearized, k-step, difference-differential
equation with constant coefficients which can be written

\i
Untk - Biup+k - BBahek - - - - BjUpik-j - BBjUAk-j
- Bg+iup - hBgsiuwf =0 (3)
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Nearly always, equation (3) represents formulas based on polynomial
approximation. This simply means that if each u and u' is expanded in a
Taylor seriles about x,, the coefficients of the powers of h in equation (3)
will vanish up through some integer L. The number L 1is then the order of
the polynomial approximating the function in the interval xp < x < Xpik
(the embedded polynomial) and the product of hi™l, and its coefficient is the
first term of the truncation error. For example, since

Upyr = u(nh + h) = u(xy + h) = uy + hu! + % h=u) + % n3u"' o+

hulyy = hu'(xpy + h) = hu} + h%ul + % neul +

we can construct for the modified FEuler method the simple table:

From unlh-hhﬁ--héug_ hsug*
Unia 1 1 /21 16 |. .
-up, 1] o 0 0
-1/2 hujer | O |-1/2] -1/2 | -1/k
-1/2 hu} o|-1/2f o 0
suss to | 0] o | o |-1/12]. .

Clearly, the order of the polynomial embedded in the modified Euler method is
2 (even though only one step is used) and the truncation error is predomi-
nantly -u"'h®/12. A similar tabulation for equation (3) is shown below.

From Uy hué h2ﬁ37“$‘ Vrhsuﬁ{dqd— a n*ull’ |
Unik 1 K 1/2 2 1 1/6 &3 1ok ke |
-Biunsk | -Bi  |-Bik -1/2 B1k® -1/6 B1k° -1/2k Bik*
hBjufex | O |-B1 1k -1/2 Bik2 -1/6 B1x>
SBounik-r | -Ba  |-Balk -1)|-1/2 Ba(k-1)2]-1/6 Ba(k - 1)%|-1/2h Ba(k- 1)*|.
-hBsunik-1f O |-Ba -p5(k - 1) -1/2 Ba(k-1)2{-1/6 Ba(k-1)*
~Bia1Un -Bk+1 0 0
~hBl g U 0 -Bﬁ+1 0 0 0
Sums to 0 0 0 T 0 1 o

Equating the sum of the first L columns to zero gives the conditions on the
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and B' required if equation (3) is to represent a polynomial of order L
tﬂrough k + 1 points. One can show that the product of the sum of the 1th
column and its heading is

k+1

Z 1
erp(1) = -5 ul?) Z [Z(k +1 -9 8y + By + 1 - 3)1] - x ()

J=%

Therefore, er (L, + 1) is the first term in the truncation error of a Taylor
series expansion for any function u(x) represented by the difference-
differential equation (3). The total truncation error is given by

(o]

Z erp(z)

1=L+1
Until recent years3 equation (3) was used as the sole basis for deter-
mining the accuracy and stability of a numerical method. As is now well rec-
ognized, this is rarely a correct procedure. Let us suppose, for example, we
are using equation (3) to find the value of u at x Ntk e Then the only time
it describes the total numerical method is when both B, and Bl are identi-
cally zero. This is the case when a predicted value is calculated but no
correction is made. Equation (3) also represents the numerical result of an
implicit method where the terms multiplying B; and Bi might have been cal-
culated by some iterative procedure. This is the assumption under which it
is usuvally applied. Almost all practical methods use at least one corrector
and when such is the case the accuracy and stability of the actual results
are affected by the mutual interaction of the predictor and all of the sub-
sequent correctors. This will be fully developed in the following sections.

At this point we wish merely to define a notation for a true predictor-
corrector process. Consider, as above, that the values of upsk and uﬁ+k
are unknown but all values with prior subscripts are known, being either
given or obtained from previous calculations. Then for the predicted value
at n+ k we can write

(1) 1
Un+k = }: Oljun+k+1-j + OLjhur'1+k+1-j) (5)

Jj=2

k+a

or, to shorten the notation,

k+1

(1)

1 1
Unt+k = (@juney + CLjhun+J) (6a)
J=2

See the next sectlon for some hlstorlcal dlscu551on



wvhere J =k + 1 - j. This forms the first family® at the location n + k
which is designated by the superscript (1). If this is followed by a cor-
rected value at n + k, we can write, where again J =k + 1 - j,

k1
1
w{Z) = plma{t)’ 2 (Bjunty + Bjhuniy) (6v)
j=2

which defines a second family at n + k. (The possibility of including a B
term is discussed under equation (4h).) Another corrector could be added with
coefficients 73,73 forming a third family, etc. If, however, we consider

the cycle of computation complete after the evaluation of equation (6b), then
the second family is the final family for the dependent variable u. Next,

(2)

a decision must be made as to whether or not un+k shall be used to evaluate

another estimate of the derivative at n + k. (In this regard, see

Definition - Family.) A derivative has already been calculated at n + k,
1
namely uni% , and it can be used to advance the solution. If this path is

chosen, we (in this report) refer to the method as a complete method. The
function and its derivative are members of different families (initially
generating the various families presents the same difficulties that arise in
starting multistep methods) and equations (6) can be written

k+1 .
ugii = E: <§jun+J + ahhuéi}_)
=2 (72)
k+1
Un+k = Blhué*%t E: <ﬁjun+J + thugi}Y
Jj=2 J

where the superscript (2) has been omitted from the final family for u.
Choosing the other path provides (what is referred to herein as) an incomplete

2)

1
method. In this case ué+k is used to find ugf% and the latter is placed
in memory for use by subsequent predictors and correctors. Now, the function
and its derivative are members of the same family and the superscript (2) is
omitted from both; thus,

k+1
(1) .
Uptk = (ogupg + ajhuny)
j==
5 (7p)
k+1
Untk T Blhun+k }: (Byuprg + DJhun+J)
J/

Incomplete methods are the most common, but not necessarlly the best
“4See Definition of Terms. |
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Table T lists the coefficients of a few of the commonly used difference-
differential equations, together with the leading terms of their truncation
errors as defined by equation (4). Identifying names are included, although
these are not unique.

The Method Used to Measure Accuracy and Stability

Development.- In the application of equations (7) to equations (1), the
matter of overall accuracy in the resulting numerical scheme depends not only
on the truncation error but also on the stability of the numerical process as
it is continued along a number of steps. Thus, as is well known, the modified
Euler method, row 1 in table I(b), is stable; but the Nystrom equation, row 2
in table I(a), when used by itself, is unstable. The usefulness of any set
of difference-differential equations depends upon a balance between accuracy
and stability. Dahlquist (ref. 1) found the maximum order of a polynomial
that could be embedded in equation (3) for a given k wunder the condition
that the resulting predictor-corrector method would be stable as h - 0. He
concluded, for example, that a three-step method could never support a poly-
nomial of order h® or higher and still be stable. Hamming (ref. 2), at
about the same time, developed a stable three-step corrector formula having a
truncation error led by a term of order h3, the minimum possible according
to the proof of Dahlquist. Hamming's stable corrector formula and the most
accurate, but highly unstable, three-step corrector formula are shown in rows
6 and 9 in table I(b).

In a very interesting paper, Chase (ref. 3) put a new light on the
developments mentioned above and brought out two important points. TFirst
(with a notable exception in Hamming's article) nearly all theorems and proofs
regarding stability published prior to Chase's paper are based on the limiting
case when h - O. Second, nearly all analyses of corrector formulas, includ-
ing Hamming's, assume that all effects of the predictor have vanished, or, in
other words, that the corrector equation is brought into complete balance.
Chase showed that when the above conditions are not met (which is certainly
the practical case, since step sizes cannot be zero and very often the cor-
rector is used only once), the conclusions regarding stability of the various
methods undergo startling changes. For example, Hamming's corrector formula -
fully satisfied ~- is stable for values of -|Ah| even less than -2. But
the result of predicting with row 6 of table I(a) and correcting with row 6
of table I(b) (Hamming's method without the modifiers) is unstable for
—Ikhl < -0.5. BEven more dramatically, Chase showed that predicting with row
6 in table I(a) and correcting with row 5 of table I(b) (Milne's method with-
out modifiers) is stable for -0.3 > -I%hl > -0.8. 1In other words, a predic-
tor and a corrector individually unstable for all -|%h| < 0 combine to form
a stable method for a certain applicable range of ~-|Ahn|!

A final lesson to be learned from Chase's paper concerns the use of
"modifiers." These are weighted combinations of the predicted and succesive
corrected values. In the two cases mentioned above, Hamming's and Milne's,
the use of modifiers in one case increased and in the other case decreased
the range of stability. This suggested a study which would determine optimum

11



values for the modifiers. In the terminology of the present report, a modi-
fier is a family that is not fundamental. By means of operational techniques,
we shall see that a method with a given step number and modifiers can be iden-
tified with a method having a higher step number but composed only of
fundamental families.

Description.- Consideration of the matters discussed above suggested an
approach differing from the one presented in references 4 and 5. The
approach in this report does not optimize the coefficients Bj and 65 in

equation (3), but rather the coefficients in an "operational form" as defined
in the last section of this report. The coefficients defined are the funda-
mental parameters governing the accuracy and stability of linear numerical
quadrature formulas and are functions of all the aj, aj, Bj,and 83 and their
complete interaction. Furthermore, stability will not be studied in the limit
as h - 0, but rather over a finite range of h, a range which is to be made
as large .as possible for a given accuracy, and includes the entire complex
plane.

Sketch (b) graphically presents the details of the proposed approach.
A representative differential equation (or set of differential equations),

(y K
Upsk = :Zz[aj Une+1oj * h“jluln+k+|—j]
_.n Loy S ha'u!
Unik =Biunsk + hBjunsk + 22 [Bjun+k+l-j * Bjun+k+l—j]
j=
/ %
// l aj, aj, Bj, B, efc. I \\
_ / | —\ —
!
Representative ; Representative
linear hnear
difference | differential
Complicated equations | equations Comphcated
difference | differential
equations | | equations
I I
m iterations — — — — ——J l
— | |
| |
bl *
Accuracy *
Numbers Exact solution — — — = Stability-e — — Exact solution Unknown solution
Sketch (b)

which is discussed fully in the next section, is chosen and solved exactly.
Then a group of linear difference-differential equations with unspecified
constant coefficients is introduced and combined with the differential equa-
tion to form a set of linear difference equations. Operational techniques
are used to solve these difference equations exactly. The solution to the
difference equations is then compared with the solution to the differential

12



equations. Eventually, the coefficients a5, QS’ etc., are chosen so that

the two exact solutions match as closely as possible under the condition that
the resulting process remain stable over a given range of step size.

Operational Solution of Difference Equations

In the presentation of the analysis in the following sections the reader
is assumed to have some knowledge of the theory of ordinary difference equa-
tions. This theory is well developed but its publication is not nearly so
widespread as that on the theory of differential equations. A brief review of
a portion of an operational approach to difference equations is given below.
For complete treatments see Boole (ref. 6) or Milne-Thomson (ref. 7).

Classically,

Uptk + Cilptk-1 + - - - + Cruy = F(n) (8)

ig defined as an ordinary difference equation of order k. Unfortunately,

the word order in most modern books and articles on numerical methods is used
to designate the highest integer exponent in the polynomial embedded in equa-
tion (8). 1In this report we also refer to the order of a method in the latter
fashion and refer to k 1in equation (8) as the step number. If the coeffi-
cients Cp, C2y, . . ., Cx 1in equation (8) are independent of n and u, the
equation is an ordinary linear difference equation of step number k with
constant coefficients. The solution to the equation when F(n) = 0 is the
complementary solution which is added to the particular solution involving
F(n) when F(n) # 0.

Solutions to equation (8), when the coefficients are constant, are

obtained by operational methods similar to the Laplace or Fourier transforms
for differential equations. If E 1is defined as the operator

_ h(d/dX) - (9)

Eup = e Up = Uptl
equation (8) can be written
-1
{EX + clEk + .« .+ Cxlu, = F(n)

The complementary solution is determined by finding the roots to the charac-
teristic equation

s -
B EE T L+ = (B MHE -} - - - {E - =0
and this solution is

— . — —
up = CiAL + 02%2 + .. .+ Ckkﬁ

where the C; are constants determined by the initial conditions. If a root
is repeated m times, its coefficient is a polynomial in n of order m - 1.

13



Thus, for _—

{BE-M}{E -y, =0
the solution would be
Up = (610 + Elln + . . .+ Elmnm)%g_l + 627\2

If we consider forms of equation (8) for which the Cy are real, any complex
root of the characteristic equation must have a conjugate. Such cases can be
treated as in the following example. Let

{(E - - iBHE - & + iB}{E - N3} = 0
be the characteristic equation. Then setting

2 =52 + g2

I

r

D
1

tan(B/a)

we can write the equation in the form

n - . n . —.n
up = Cir 7~ cos nd + Cor sin nf + Cshs

The particular solution to equation (8) is easily expressed when F(n) is
a polynomial in n or any sum of terms having the form %% where ¥ is any
complex constant. The latter solution is given by Boole's first rule and is
of particular value to us. Boole showed

{c(®) 17" = 7a(7) (10)

where the notation reads G(E) operating on 7ﬁ equals the product of 7“

and G(¥). Thus, the particular solution of

(BE + 0uEX"T 4+ . . L4 Crlup = adHhe
is
o i o phn
(U-n)p ="K o1 Ae
E" + CiE + . . .+ Cx
or
hn hk h(k-1
() = Ac/(HHE g, Hk=2) C+ o)

Tt is valid for complex p  and its evaluation does not require that the
roots to the characteristic equation be known.

The solution of simultaneous linear difference equations with constant
coefficients offers no particular difficulty. For example, the two equations

1k



!l

Un4 + 2Vn 2 -n

1 =
Un+lr - 3 Un T Vnt1 0

in operational form become -n
Bu, + 2vp = 2

{# - %}-un + Bvp = 0O

or in matrix notation
i 2 uyp, 2

1
E--é- E vy 0

The characteristic equation for the set is

E 2
1
E - 5 E

and the general solution for u, 1is

up = (Co + alﬂ)(+l)n + {}———E——E}-Q—n
(B - 1)

or
u, = 66 + Cin + 2(1-n)

THE REPRESENTATIVE DIFFERENTTAL, EQUATIONS

Development

Fundamentally, the representative differential equations, for which the
conclusions throughout this report exactly apply, are the set of simultaneous,
linear, first-order, differential equations with constant coefficients
(w' = aw/ax)

15



v N
Wy = 811W + aipWs . . . + T1(x)

Wo = ap1Wi + apgWs + fo(x)

= azi1Wi t agzvWe + fz(x) (ll)

&
|

or any group of higher order differential equations which reduce to such

a set. Although the subsequent analysis rigorously applies to equations (11),
it is unnecessary, for the purpose of studying the accuracy and stability of
a numerical method, to consider them in such a general form. In fact, we will
see in the next few sections that the stability and accuracy that result from
integrating equations (11) by any of the numerical methods considered herein
are completely independent of the elements as;s except as these elements
determine the roots of the characteristic equa%ion (the eigenvalues). In
other words, i1f equations (11) are integrated by some polynomial numerical
method for any number of steps and then uncoupled (put in the form of eigen-
vectors), or if equations (11) are first uncoupled and then integrated using
the same method and step location, the results will (except for roundoff
error) be identical regardless of whether or not they are correct or the

numerical method is stable.

Laplace transform. If W(s) is the Iaplace transform of w(x)

We) = [ e u(x)ax (12)
(¢]

and

sw(s) = w(0) + £j e_SXw'(X)dx (13)

Multiplying both sides of equations (11) by e~ 5% and integrating with
respect to x from O to o gives

-w1(0) - f1(s)

-w2(0) - To(s)

~w3(0) - Taz(s)

(a11 - 8)W1 + aisWs +

am W + (8sp - 8)¥Wa

I

aglVfl + azsﬁg

16



a set of simultaneous, linear equations for Wy, Ws, - - . Wy, . - . . The
determinant of these equations is a polynomial in s; and equating this poly-
nomial to zero results in the characteristic equation for the differential
equations (11). Let the roots to this characteristic equation be

O1, Opy « « « Omy, - - - - (For simplicity, the argument proceeds as if none
of the roots is multiple, but this restriction is not at all necessary. From
the well-developed theory of the Laplace transform, the complementary solu-
tion to the equations (11) can at once be written

0 oX OmX

01X
+ .« .+ Cpe +

wy = C ,e + Csye

11
or since x = nh
O'mh)n

n
wy = Clz(ec’lh)n + ng(e02h) + . . .+ Cpy(e ... (1k)

where Cy; are constants depending on the initial conditions and the nature
of the functions f3(x).

As is well known, the above developments can be viewed in a slightly
different light. Write equations (11) in the matrix form

W' =[aAlw+ T (15)

where - defines a column vector and the [A] matrix is defined by

(511 a1z a1z - .+ O
ap1 ap2 aps3
asy aao ass « e e
[A] = (16)
L. . —J

The complementary solution (14) immediately follows where the onm are the
eigenvalues of [A].

Numerical solution by a predictor or an implicit corrector.- Now let us
solve equations (11) using a single difference-differential equation. In
practice this would be a predictor or corrector with the implicit relation-
ship somehow brought to equality. In the next section the generalization of
the following to actual predictor-corrector methods will be discussed. The
analysls 1is presented in this order because of the simplicity of the develop-
ment in this section relative to that in the next.

Consider the difference-differential equation (recall that J=k+ 1 -3)
k+1 kt+1
]
Un+k = 7‘ Bjupeg + h Bju;1+J (17)
JA—
j=1 J=

17



which is a predictor if B, = Bi = 0. Introduce the operator E (see eq. (9))
and rearrange. There results

k+1 kt1
h E: BéEJ uy = ES - }4 BjEJ Up
j=1 J=1
or
( k+1 )
BX - Z ByE’
uy = ki;l up = Su, (18)

which defines the operator S 1in terms of the operator E. Thus, 1f the
difference-differential equation is applied to the differential equations (11),
there results at the nth step the set of linear difference equations

(811 - S)win + azpwen + . . . = -f1(nh)
apz1¥in + (agp - S)wap = -fo(nh)
as31Win + assvWop = -fz(nh)

Clearly, the roots to the characteristic equation in S are once again the
eigenvalues of the matrix [A]. In other words

(s -01)(8 -02) « . . (S -0y -..=0

This leads to the rather remarkable result that the numerical method isolates
the individual roots of the exact solution and operates on each of them
individually as if the others were not even present!

Recall the definition of S and construct the "subcharacteristic”
equation for E 1in terms of op- Thus

k+1
k 1
EF - 2 (By + ophBy)E) = 0
J=1
which has the "subroot" structure
(E - 7\lm)(E—7\2m) . . . =0

18



One of these roots will approximate the Taylor series expansion of the term

edmh with a truncation error appropriate to the degree of the polynomial
embedded in the difference-differential equation. This root is commonly
referred to as the principal root, designated Aip, and can always be
expressed in the form

Omh
N = 1 + Gmh + % g%hz + % c%hs + . . .= e m + (19)

where the % after the egmh indicates the existence of a truncation error.
The remaining roots Asps; Aams- -« - are spurious. They are introduced by the
numerical method and depend on the choice of the difference-differential
equation, both as to number and magnitude.

In summary, the exact solution to the differential equations is

gih. n omh, 1
win = Ciie ")+ . . .+ Cp(e™m) T+ L L (20)
and the exact solution to the difference equations is
_ o1h, n Omh, \ 0
le’l = Cll,z(e -—) + . . .+ Clm,z(e _.) +
n
+ 021’1(?\21)1,1 + . . .+ C2m,l(7\2m) +
n
+ Csl,z(xsl)n + ...+ Csm,z(xsm) +
(21)

The results include complex roots and may be extended to multiple roots.

Numerical solution using both a predictor and corrector.- The conclusions
drawn in the previous section were shown to be true when a gingle difference-
differential equation is used to integrate a set of simultaneous differential
equations. We now show the same conclusions hold for a predictor-one-
corrector method.

To begin with, apply the incomplete predictor-corrector combination

k+1
T

1 1 !

e
J (22)
. k+1
! 1 t 1
Untk = Blhug+% + }; (Bsun+g + Byhupsy)
J'=2

19



to the single equation
u' = ou (23)

There results, in operator notation,

k+1 k+1
-{Ek}ugl) + }: ajEJ vy, + o<h E: G&EJ u, = 0
j=2 j=2
k+1 k+1
1 J
x{hBiEk}ur(l ) B - Z BJ-EJ u, + 6 h Z B:jE u, = 0
j=2 j=2
Define a new set of operators k1 )
o J
o B
k dJ
E =2
s= - VSt
t T
h Z B h Z o
j=2 j=2
(2k)
k+1
'k
B1E -
t =2 —— 7 = J=z
k+1 k+1
1 J !
j=2 j=2
and the matrix equation
S g -y ugl)
=0 (25)
ot o -2z ||luy
follows. The characteristic equation is simply
s(c = 2z) -ot(oc -y) =0 (26)

Substituting for s, t, y, and z one can determine the root structure for

E in terms of the eigenvalue of the single equation (23)- This root struc-
ture determines the accuracy and stability of the method defined by
equations (22) as it applies to a single differential equation.
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For the two equations

= azals + alauei}

= a8g101 + 8gols
the matrix expands to
[~ ]
s 0 ga11 - X
0] S o1

a;it aigt air -y

as1t agat asy

If the eigenvalues of [A], where

[AJ _ [all

ap1

are o, and op, one can use the identities

0102 = aii8gp2 - 8pidizs

61 + Og = az1 + aip

P-) 2 2 2
of + Oz = az; + 2ai1as1 + ass

and show that the determinant of the matrix in equation (28) reduces to the
product

glpp. Y (2
J=t Gj'b 0‘j -7 9)
having the characteristic equation

[s(o1 - 2) - to1(or - y)1lls(oz - z) - toa(oe ~y)] =0 (30)

This shows that when the method defined by equations (22) is applied to two
coupled differential equations; the stability and accuracy of the result
depend entirely on the eigenvalues of [A] and are not related (in any other
way) to the magnitude of the individusl elements.

The generalization of the above to larger groups of simultaneous equa-
tions depends upon a proof of the conjecture




8 ¢
0 8
0 0
a11t  8i1pt
az1t 25t
az1t  asgt

where the o.

the aubhor knows
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compuber.
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aggt PP
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where bij and Aij are constants. Then if

¥ = [ATW + [BIF (32)
where
[4] = [BI[CI[BI™ (33)
U is independent of [B] where
= [B17'% (34)
The proof Follows immediately by multiplying equation (32) by [BI™*. Now

reduce equation (32) to a set of difference equations by applying any com-
bination of linear, difference-differential equations representing complete

or incomplete, predictor, multiple-corrector methods. Solve these equations
for W and apply equation (34). Regardiess of the choice of [B], we hypoth-
esize that the numerical value of U will be identical at every step except
for roundoff error. Again a "numerical proof"™ of this conjecture was obtained
by solving five linear, simultaneous equatlons with real and complex eigen-
values for several choices of [C] and f and.a variety of [B]. With double-
precision arithmetic the differences in U caused by the various choices of
[B] could safely be attribubed to roundoff.

Durirg the preparation of this report a simple analytical proof of the
above was presented to the author. This proof, which changes the hypothesis
into a theorem, was prepared by Dr. William A. Mersman® an& proceeds as
follows.

Combine equation (15) with the predictor-corrector sequence defined by
equations (22). Using [I] to designate the unit matrix, we have

k+1
wWE) = z (3011 + na}[A]) ey + b [TIE,
=
kL
Blh[A]Wﬂ-l—k_ + 2 (BJ[I] + hBJ[A])Wﬂ—rJ' +h- 7 BJ Q_+J’
J=

Eliminating ﬁéi} and introducing an operational notation, we derive the
equation
k+1
E(1] - Z (B3] + n(Biay + BI[AT + b3pial[AIB)E" + 37,
J=2
kt+1 kt1

Z BILTIE’ + BrnfA] Z 7,

6Chief, Problem Definition and Analysis Branch.
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Define the terms

ktl
3
o(B) =1 - ) By
.r!,gw,!
J:
ktl
o(E) = -h > (s + BJ)EJ
kbt
o(B) = b2y ) ajE
[
j=2

and the characteristic equation (in terms of BE) for the system of difference
equations results from sebbting the determinant of the matrix

[Pl= [o(®)I] + o(®)[A] + +(E)[A]R]

equal to zero. As is well known (see any text on linear algebra) both the
determinant and the eigenvalues of [P] are identical to those for [P¥] where

[p*] = [B][PI[B] ™"

for all nonsingular [B]. Furthermore, whether or not [A] has multiple eigen-
values, [B] can alwsys be chosen s0 that

[BI[AI[BI™" = [T]

where [T] is upper triangular and the elements of its disgonal are, of
course, the eigenvalues of [A]. But since

[BI[AIZ[B] = [BI[AI[BI *[BI(AI[B] = [T]°
this choice of [B] also makes [P*] upper triangular. It follows that

IPI = IP*l = g(D(E) + Ao(B) + k?T(E))

vhere the Ay are the distinet eigenvalues of [A]. This proves the stated
hypothesis.

Discussion

The results just presented show that a predictor-corrector process
applied to a set of simulbaneous, linear, differeuntial equastions with constant
coefficients automatically "detects" the eigenvalues of the differential
equations and the success or fallure of the numerical method is measured by

1. Its accuracy in resolving the elgenvalue for which it is most
inaccurate




2. TIbts stability with respect to the eigenvalue for which it is most
unstable

Therefore, to study and compare numerical methods as they apply to the solu-
tion of systems of differential equations (11), it is sufficient to study and
compare them as they apply to a single differential equation. In the case of
nonmultiple roots, this single equation is simply

u' = A+ £(x) (35)
where N may be complex and represents the "worst" eigenvalue of the system.
That it is generally impossible to estimate the magnitude of the elgen-
values by the magnitude of the individual elements of a matrix is shown by

the following examples in which all three matrices have (except for the limi-
tation of 8 significant figures) the same eigenvalues, -1, -10, and -100.

C_ol51.9752  9523.104k  -2225.7133 | )
-765.51692 2970.5032 -695 .60020
L-690.9888A 2671. 4410 -629.92802 |
[ L1 . 77UET 65.261307 15.813105 |
22.518472 ~39.291311 -11.2644h27 (36)
| 40.012615 ~75-965121 -29.93401h |
[ -95.492090  -118.L0717 6.8204432 7]
-8.63032L46 ~12.144652 0.26226723
| -85.039375 ~114.33994 -3.3632580 | )

This can be an important consideration in some programs that attempt to con-
trol step size automatically using norms based on the elements in individual
rows or columns (see, e.g., ref. 8).

Equation (35) is, basically, the representative equation used through-
out this paper. (For practical reasons, a more convenient expression will
actually be analyzed, see eq. (37).) In most papers the representative
equation is presented as (la), of which equation (35) is a very special form.
Nearly always, however, commitments about the nonlinear equation are based
on local linearization for the simple reason that the nonlinear form is
intractable. In this approach, the reader may regard equation (35) as char-
acterizing equation (la) when A symbolizes the average value of BF/éu

over some interval (ref. 4, p. 207), or the Lipshitz constant over the same
interval (ref. 5, p. 216).

Accuracy .- For the purpose of studying the accuracy of a difference-
differential approximation we choose equation (35) as the representative form
and permit A to be complex throughout the analysis. Equation (35) is still
unnecessarily general, however, since, for testing the accuracy of a numerical
method, we can replace f(x) in some interval with its equivalent Fourier
series and draw out from the latter the term Ape™n* which represents the
highest frequency in f(x) we wish to resolve by the numerical computation in
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the chosen interval. All lower frequencies are automatically more accurately
determined. Hence, for studying accuracy, equation (35) may be replaced by
the simpler form

u' = A+ AHE (37)
which has the general solution
Ax . A
u=ce  + (38)
L= A

where c¢ 1is an arbitrary constant and both A and p can be complex. A mea-
sure of accuracy of any numerical method is gilven by its worst approximation
to either term in equation (38) in the presence of the other.

Stability. - Equation (35) is also used as the representative form for
analyzing the stability of difference-differential approximations. For such
studies the term f(x) can be omitted since it does not affect the stability.
Whether or not a method is stable depends upon the magnitude of the roots to
the characteristic equation for the difference equations which the method
generates when combined with the representative form. There is a large and
important subset to equations (ll), associated with positive definite forms,
for which all the eigenvalues are real and positive, that is, for which the
A in equation (35) is real and negative. For this subset the stability
criterion can be developed from the simple normmlized equation

u' = -u (39)

in which the independent variable is real. This form is often used (see
refs. 2, 3, 9), and for a numerical method to be stable when applied to equa-
tions (11), it must certainly be stable for equation (39). But it is not
sufficient, and in a later section some methods are shown to be stable for
equation (39) but not for equations (11).

When the eigenvalues of equations (11) are complex, the A 1in equa-
tion (35) becomes complex. The generalization of the numerical stability
criterion, under these conditions is presented in reference 10. For an anal-
ysis that applies this generalized criterion to several numerical methods,
see reference 11.

Two ways of approaching the study of the stability problem for complex
eigenvalues are suggested. One is to consider the simultaneous equations

W o= Vo

(40)

9

é -wy + 2vWs

where v 1s always real. The advantage of this way is a given set of
difference-differential equations can actually be used numerically to check
the results. The necessary and sufficient condition that a numerical method
be stable for equations (11) is that it be stable for equations (40) in which
v 1s real. When |VI > 1, equations (40) have real eigenvalues. When
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lvi < 1, equations (40) have two conjugate complex eigenvalues, and the case
v = O represents the condition for pure imaginary eigenvalues.

A second way to study the general stability problem is to consider the
normalized equation

ut = ety (1)

which is a special form of equation (35) where

A=e? (42)
and f(x) = 0. The study of equation (L41) avoids much of the algebra required
to analyze equations (LO) but necessitates the use of complex arithmetic.
However, in modern computer languages the latter is not a serious disadvan-
tage. The necessary and sufficient condition that a numerical method be
stable for equations (11) is that it be stable for equation (42) for all
values of w.

THE GENERAT, ANALYSTIS OF INCOMPLETE, MULTISTEP, PREDICTCR,
ONE-CORRECTOR METHODS

General Discussion

The following study applies to all numerical methods that integrate
ordinary differential equations making use of a predictor followed by Jjust
one corrector, with both the function and its derivative in the same final
family. (A study of complete methods is presented in a later section.) These
incomplete methods include, for example, Hamming's method, the Adams-
Bashforth-Moulton methods, Milne's method, etc. In fact, the result of using
any predictor in table I(a) followed by any corrector in table I(b) can read-
ily be determined both as to accuracy and stability. The analysis permits
one to calculate exactly (except for roundoff error) what a digital computer
will produce after any number of steps when any one of the methods is applied
to equation (37).

The operational form.- Consider a predictor-corrector sequence forming

the first family u(l)
k+1
(2)

t
Ui = Z (ajupsg + ajhuney) J=k+1-} (43)
J=2

and the final family u

k+1
Untk = Blu-r%-l): + Blhur(1+}<: + 7 (Byupsg + BahumJ) (k)
J =2

Notice that by multiplying the top equation by B, and subtracting the
result from the second equation, we can form a third equation



' k+1

1)
Upik = Bihun+k + }: (Bjun+J + Béhu&+J) (L45)
Jj=2

This indicates the lack of uniqueness in the values for the coefficients in
the difference-differential equations for combined predictor-corrector
methods .

The following is a simple example of this lack of uniqueness. An Euler
predictor followed by a modified Euler corrector is generally written in the

form

(1)

Unta

1
u, + hun

n/ ()7 .
un+§ u'n+l +U_n

Clearly, the analytical result of such a method is not altered by the modifi-
cation

(46)

Un+a

(1)

Un+i = Up + hup
' (7)
(1) h (2) 1

—_ 1
Upt+1l = S Un+l - Yn - hu&) +ou, + 5 \Un+l + u&)

where cgo 1s an arbitrary constant. As an example, setting cg = 1/2 gives
the combination
(1) !
Un+i = Up + hup
(L48)
(1)

1/ (1) '
un+l = E‘ U.n_H_ + U_n + huH_f_l

If the corrector is used only once, equations (46) and (L8) are identical in
accuracy and stability when applied to equations (ll).

Returning to our development, and choosing, without loss of generality,
equations (43) and (45), we introduce the operator E and the representative
equation (37). This combination produces the linear difference equations
which can be written in matrix form

k+1 Jr ] T%j- y
k ) 1y J (1) ~ ' Jph
E - E: (aJ + Khaj)E uy /. ase
j=-2 J':Z
= ApMin (49)
k+1 k+1
1k k g h
-AnB E- E - }; (B + NnBj)E U, }; BjeJ“
L J=2 ] L =1 |
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Solving for u,, one can divide out EX from the left column with the result

k+1 k+a
Jph
B - }: (Inj + Aalgy + A2h2Lg3)E »up = hac™"" }Z (Rij + NRgy)e”™"  (50)
J=2 J=1
where
Iny = Bj Iny = Ipy = Lsy =0
1 ! .
Lpj = @3By + By Rij = B] (51a)
Laj = %)Ba Ry = ajPL = Loy

Equation (50) is the operational form of multistep, two-iteration methods and
the I and R are the coefficients in the operational form. Coefficients in
the operational forms of a variety of methods are given in table II.

Equation (51a) can be inverted. That is, the coefficients in the
difference-differential equations can be expressed explicitly in terms of the
coefficients in the operational form, provided Rj; # 0. Thus

@y = (Ioy - Ri3)/Ri1 )
as =R :/R
J 2] 11 L (Slb)
By = Ing
By = Rij J

Fortunately, cases for which R;; = O appear to have little practical use.
This inversion is the key to the construction of optimum numerical methods,
since both stability and accuracy depend fundamentally only on the operational
form (discussed later), not on the difference-differential equations. We now
seek only to analyze given methods, not to develop new ones.

Before proceeding, it is convenient to introduce the following two
definitions.

DE(E) = the coefficient of wu, in any operational form (
52)
NU = (b - A) times the coefficient of AP in any
operational form
In particular, for multistep, two-iteration methods

k+1

DE(E) = B - }Z (Lpj + Algjy + x2h2sz)EJ (53a)
J=2
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k+1
NU = h(p - A) }: (Ryj + Khjo)erh (53b)

j=1

The particular solution.- Referring to the section on the operational
solution of difference equations, we can immediately write the particular
solution in the form

k+1
hAeuhn ;z (le + %hjo)eJ“h
_ _J=1
U.n = — N
P k+1
KB }z (Lij + AaLgy + AghEsz)eJ“h
j=2

or, using the definitions in equations (53),

_ Aeuhn NU
e (“ i ”) D" .

The complementary solution.- The explicit evaluation of the complementary
solution requires a knowledge of the roots to the characteristic equation.
In the case under consideration, the characteristic equation is

k+1
B - zgj (Tnj + Anlpy + A2h%Lg3)E = 0
j=2
or, using equation (53a),
DE(E) = O (55a)
Let the roots to equation (55) be such that
(BE-ME-M)(E-N) - . - =0 (55b)
The complementary solution is then
n n n
Up, = ci(M) + ca(A2)” + ea(ha) + .+ . . (56)
where cjp,cp,ca, - . - are constants fixed by the initial conditions, and,
conventionally, A1 is the principal root while As,As, . . . are all spurious

roots introduced by the particular numerical method.
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Accuracy

The error in the perticular solution.- Comparing equations (38) and (54),
one can now derive the error in the particular solution. Defining the error
term

Exact particular solution of difference equation

Fu T Exact Partiéﬁlaifsblution-bf differential equation - (57)
it follows that uh
=, - NU - DE(e™) (58)

DE(MP)

Introducing the values of NU and DE(euh) into the numerator of (58), and
collecting coefficients of Ah, gives

k+1 k+i1
hk U Juh Juh
- + }4 (Iyy + phRyj)e B an }; (IQj - Ryj + uthj)e H
. J=1 J=1
= = —— o L . e
0
DE(th)

(59)
The coefficient of the A?h® term is zero since Rpj = Laj (see eq. (5la)).

Equation (59) is the exact error which any incomplete multistep, two-
iteration numerical method makes in calculating the particular solution to
equation (37). However, since all methods being studied here are polynomial
approximations, it is more significant as well as more convenient, to express
the errors in powers of h.

Setting

o 1
uh Z (Hh)
e =
1!
1

=0
one can show

k+1 k+1 k+1
DE(M) = 1 - Z Inj + hiuk - p Z JLaj - A Z Loj | + 0(b®) (60)
j=2 J=2 =2

As will be shown presently (see eq. (72)), to have any polynomial fit, at all
the equalities
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must

Next,

one ¢

where

how many steps are taken.

k+1 )
Llj =1
j=2
t
k+1
}: [Ley + JLp3] =k
J=2 7
hold. Under these conditions
k+1 k+1
. DE() .
lim ——== (b - N) (3 - DIng = (b - ) Loj
h-o h .
J=2 j=2
noting w o -
-1
(Hh) Z+1JZ ) Z( h) J
1! - 1!
1=0 1=0
an show
L= =
h(p - A) h(p - A)
k+1
1-1 l 12
[13°7R1j + I T3] - k
[ .
_ (uh) j=1
Ty = 71 k+1

Z (3 - D)Iny
j=2

k+1
[25" Ras + 37 (Laj - Raj)]
Ah(ph) =1 )
STu2 1! k+1
Z (5 - )T
j=2

(61)

(62)

(63)

(64)

(65)

Now it is important to notice that &r,, is a "global" error; that is,
it is the precise error in the particular solution at a given x no matter

nomial, such as er in equation (h), is repeated n +times after n
Because x = nh, the polynomial error can grow, for a given x, to
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ammmdm%dy(xﬂe%QﬂL Hence, rather than Eﬁ,tmamﬂm ery represents
the accuracy of the local polynomial in a given method.”

If a method is to represent a polynomial approximation of order L to
the particular solution between n + k - 1 and n + k, then the terms inside

{} in equation (64) must sum to zero for all 1 =0, 1, 2, . . ., L and the
terms inside {} in equation (65) must sum to zero for all
1=0,1,2, . . ., L -1. This gives at once the equations that must be

satisfied by the coefficients in the operational form for a method to provide
a polynomial approximation of a given degree to the particular solution.
Specifically,
k+1

.y -1 L
}: [2(k+ 1 = ) T Rag + (K + 1 - §) I3l = &,

Jj=1 1=0,1,2, . . ., L (66)

Z 1k + 1 - ) 7 Roy + (k+ 1 - 3) (Lag -Rig)l =0,
3= 1=0,1,2, . .., L-1 (67)

We shall see later (in the discussion of the complementary solution) that the
fulfillment of these conditions guarantees a polynomial fit of degree L to
both the complementary and particular solutions.

Notice that equations (66) and (67) are independent of X\ and p so the
coefficients of R and I can be tabulated once and for all. Table IIT does
Just that for any one- through five-step, predictor, one-corrector method.
The table can be used both to provide the conditions that a given polynomial
be embedded in a method, and, with equations (64) and (65), to find the error
in the result. Similar tables were used to calculate the error ery for the
methods presented in table IT.

The error in the complementary solution.- Just how well the complemen-
tary solution is approximated by a numerical method depends upon how close
the principal root, Ay, lies %o e%h, since the analytic solution is propor-
tional to eM = (eM)D gnd the numerical solution is proportional to (Ay)
Let er; Dbe defined by

er) = AL - e7\h (68)
Substituting exh in equations (55b) and (55a)
k+1 3
er)\(e?\lrl - ) (eM 2 ng) L. L = Pk }: I }: Ing(%h)m—l
j =2 m=1

"The term (u - A) in equation (63) can be misleading. Recall that it
comes from the expansion of DE(e“h) in powers of h. As p - A, the term
0(h®) in equation (60) takes over, and the error does increase. When u = A,
the solution of the representative equation degenerates and the analysis
proceeds along different lines.
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or

~-DE(eMN
ry = el (69)
(M - )

Again we are interested in finding only the lowest order error term. The

value of _1'12(e7\h - Ni) for h = 0 can be determined as follows:
1:

DE(E)
E -1

k
TLI -~ (M=ol =1lim
i=2[ ( 1)h—o] Eil

since the principal root must equal one at h = O. This, in turn, reduces to

() k+1
dDE(E d
[P -l () m
B J=2 E=1
kt+1
or, since }Z L1y =1,
J=2
k+1
k
; T (AR
lim | 1T (e - ) 2; - 1)L 0
v [0 ] = ) G- g (70)

Note the similarity with equation (62) which appears in the denominator of
er;,. Putting equations (52) and (70) in equation (69), and expanding in
powers of Ah, one can show

( )Z k+l
AL - 2
-5 ? [3%T0 5 + 138 g + 1(3 - 1)30"21g3] - k
=2
el"?\: J k+1 - J e (71)

}J (3 - DInj;

The first nonvanishing term in (71) determines the order of the error in the
complementary solution. (Notice this is a "local™ error, comparable to the
term ery. In fact, one can show that er) = ery, when p = A.)

If a method is to provide a polynomial approximation of order L +to the
complementary solution between n + k - 1 and n + k, the terms inside {} in
equation (71) must sum to zero for all 1 =0, 1, 2, . . ., L. This derives
the equations

3k



k+1
Z [(k+1-3) "L 542 (et 1-3) * T Lp g2 (2-1) (k#1-3) L Pas] = !

5=
1=0,1,2, ..., L (72)

Equations (72) are independent of A\ and p so, again, the coefficients of L
can be tabulated once and for all (for one- through five-step methods, see
table IV). By means of such tables and equation (71), the errors in the com-
plementary solution of predictor, one-corrector methods can be readily
determined., Examples are presented in table II.

Discussion of accuracy.- One can show (by using Rzj = sz) that equa-
tions (66), (67), and (72) are not independent. Hence, as was mentioned
earlier, the satisfaction of equations (66) and (67) is sufficient to guaran-
tee a local polynomial fit of degree L to both the particular and comple-
mentary solutions. Thus two sets of conditions must be fulfilled to assure a
given accuracy for a predictor, one-corrector process. If another corrector
is added, another set of conditions must be met, etc., as will be shown later.

On the other hand, if we wish to present the conditions for a predictor
only (or for a corrector only which has somehow been brought into balance),
we can set the a; and a)y terms in equations (43) and (5la) equal to zero.
(In this degenera%e case the B values become the coefficients of a predictor
with the condition B1 = 0.) Then equation (67) is an identity, and L1j=Bj,
Riy = Bj. Equations (66) and (72) are identical, and they both amount to
successive columns in the table preceding equation (4) adding up to zero
(or, in equation (L), erp = 0 for 1 =0,1,2, ..., L. Inthis case the
first unmatched term for erpy; or er, is the same as the "error constant"
term given by Henrici on page 223 in reference 5.

In summary, equations (66) and (67) are the most general conditions for
accuracy imposed upon the coefficients of two difference-differential equa-
tiocns forming a predictor-corrector sequence under the conditions:

(a) The differential equations are of the form given by equations (11).

(b) Polynomial approximation is used.

(¢) The difference-differential equations are of a form represented by

equations (43) and (L5).
Stability

A general discussion of stability is given in the last section of the
report where the Dahlquist criterion is extended to cover all linear, numer -
ical, quadrature formulas with combined effects of predictors, correctors,

modifiers, etc, In this section the specific stability of predictor, one-
corrector methods is considered.
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Some definitions.- To begin with, let us examine some terminology com-
monly used in discussions of numerical stability. A set of ordinary differ-
ential equations is inherently unstable if the real part of one or more of the
eigenvalues of equations (11) is positive. There are two classes to consider.

Class 1. The initial or boundary conditions are such that the analytical
solution grows exponentially. Then the numerical solution must also
grow exponentially and is, therefore, by definition, unstable -- but it
is not necessarily inaccurate. If these inherently unstable differential
equations are transformed into difference equations, the latter are rela-
tively inaccurate (sometimes referred to as "relatively unstable," see
the discussion below on induced instability) if any of the spurious roots

are greater in absolute value than the largest principal root.

Class 2. The initial or boundary conditions are such that the destabi-
lizing eigenvectors are suppressed and the exact analytic solution has
no terms which grow exponentially. Under these conditions the numerical
solution will still eventually increase exponentially, usually because
of small truncation errors that excite the inherent unstable terms, but,
if for no other reason, because of errors brought about by roundoff.
This can be a particularly vicious form of instability and its control
requires methods outside the scope of this paper.

When a set of ordinary differential equations is reduced to a set of
ordinary difference equations, the latter have an induced instability if the
real parts of all the eigenvalues of the differential equations are all less
than or equal to zero, but one or more of the eigenvalues of the difference
equations has an absolute value greater than one. This instability is
obviously associated with the particular form of the difference-differential
equation chosen for the computations and can, therefore, be.controlled.

Remembering that the eigenvalues of the difference ejuations are func-
tions of h, we find two ways of providing this control. One is to develop
methods that are stable when h = O. Then for small enough® h, the method
is always stable. The Dahlquist stability theorem applies to this study.

The other aspect is to develop methods that are stable for as large a value
of h as possible. In order to discuss this problem, we will refer to a
stability boundary, I%h|c, which defines a critical value of h, any increase
of which causes the absolute value of one or more eigenvalues in the differ-
ence equation to exceed unity. Thus a method has induced instability when

A = elw

/2 <w<L (73)

|2m| > |An|e

876 avold argument, we either omit the possibility of neutral stability
at h = 0, or further require that all eigenvalues that lie on the unit
circle when h = O move into it as h starts to increase. A method having

the latter property is defined by equations (120).
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A discussion of the significance of this stability boundary is presented in
a later section entitled "The relationship between accuracy and stability."

A final remark concerns the case when the real parts of all the eigen-
values from the differential equation are less than zero and the absolute
values of all the eigenvalues from the difference equations are less than one,
but some of the difference eigenvalues are greater in magnitude than the dif-
ferential eigenvalues. This condition is sometimes referred to as being
"relatively unstable." If we are to maintain a consistent definition of sta-
bility, this terminology is misleading. Such cases are stable since all solu-
tions, as well as theilr errors, approach zero with increasing x. They may
possibly be relatively inaccurate, however, the possibility occurring when the
f(x) terms in equations (11) are negligible and the offending eigenvalues are
the least heavily damped. In any case one should be cautious about trusting
the numerical solution of the asymptotic decay of a function when the level
falls beneath the product of the truncation error of the method and its
maximum resolved amplitude.

The unit circle.- Since the induced stability of a method depends upon
the magnitude of the roots to the characteristic equation DE(E) = 0, a quick,
visual, representation of the stability of a method is displayed if we plot
all the roots to the characteristic equation on a complex plane. For the
construction of these plots let 0 < h <1 and

A=e

where O < w <m. Describe a unit circle with center at the origin of this
plane. TIn the range O < w E:W/E the differential equation is inherently
unstable and the principal root, at least, must fall outside the circle for

h > 0. In the range ﬂ/2 <w<gx the differential equation 1s inherently
stable and in this range any point falling outside the circle presents a value
of h and A (in complex form) for which the numerical method has induced
instability.

The two extremes: Adams-Moulton methods, Milne methods.~ The accuracy
of most of the popularly used predictor-corrector formulas has been compro=-
mised to avoid induced instability. That this compromise can be resolved in
many ways is evident from the number of predictor-corrector methods in com-
mon use. However, all of these formulas lie between two extremes which we
will refer to as the Milne methods and the Adams-Moulton methods. These
extremes have certain identifying features which appear immediately in the
stability plots described above, but which can also be traced to coefficients
in the operational form and even to coefficients in the difference-
differential equations themselves.

The Adams-Moulton methods are defined as those for which all the spurious
roots fall on the origin when h = O, The principal root at h=0 must
always, of course, fall on the intersection of the unit circle and the posi-
tive real axis. When h = O, the characteristic equation (see (53)) reduces
to
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k+1

Ek - Z L]_J'EJ:O

j=2

The necessary conditions that make the spurious roots zero and the principal
root one are

1

Lio
Llj:‘o, j=3,l"’ooo’k+l
In such a case the characteristic equation reduces to Just

(E - 1)E5" =0

which clearly satisfies the conditions. Inspecting equations (51b), we see
this means

B = 1

Bj

|t

o, J=3, 4, « « o, k+ 1

Thus, in Adams-Moulton methods, only the value of u nearest the corrected
point is given a nonzero weight in the corrector.

In this report methods which have at least one spurious root on the unit
circle when h = O are referred to as Milne methods, and those which have all
the spurious roots on the unit circle are referred to as total Milne methods.®
In the latter case the characteristic equation becomes

k+1
k J k 104, _
E —ZLle —(E-l)jf__Iz(E-e J)y =0
j=2

and the 63 are determined such that the I;3 are real and the accuracy is
optimum. %n these cases Ly w41 # 0 and, from equations (51), Br+1 % 0.
Thus, in the total Milne methods the value of u farthest from the corrected
point is given a nonzero weight in the corrector.

All multistep methods, with induced stability at h = O, lie between
these two extremes. On the one hand they have no spurious roots on the unit
circle so they are more likely to be stable for nonzero h than the Milne
methods. On the other hand, if some of the roots at h = O are permitted to
lie off the origin - but still within the unit circle - they gain some free-
dom which can be used to choose the Inj, j =2, 3, . . <,k + 1 so that they
will be more accurate than Adams-Moulton methods with equivalent step number.

optimal methods in reference 5. The author prefers the former description
since, in practice, stability troubles generally prevent such methods from
being optimum.
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that induced 1nstab111ty plays in asse351ng the merits of various methods, we

should distinguish carefully between the requirements for stability and accu-

racy. The error in any method, as it is given by the lowest order, nonvanish-
ing, truncation terms (e.g., the values for er,, and er) in table IT), loses

its significance when these terms exceed about one tenth. In fact, to rely

on such error estimates, the step size should be chosen so that

(|Hh|: lxhl)max <0.1l

in methods applied to the integration of
u' = Au+ AT

Now one usual requirement for predictor-corrector methods, programmed
for general use, is that the induced stability boundary |%h|c, see (73), be
as large as possible, generally greater than 0.6. The question immediately
arises: Of what value is a method that is stable in a region where it is
inaccurate? The answer is supplied if we consider the application of the
method to the integration of simultaneous equations. Let us consider a
predictor-corrector process for which Ikhlc = 0.61. To prohibit induced
instability and give an accuracy measured by the values of er; and er) per-
taining to the method, it is certainly sufficient that

(|pin], lozh]) <o0.1, for all i (Tha)

where the p; and g; are determined by the differential equations (see

egs. (11) and (16)). Although (Tha) is a sufficient condition, it is not a
necessary one. The necessary conditions for both stability and accuracy (in
the sense used above) are that

(1) (|uznl, IUih|)max < 0.1 , for all i representing those p and o
one seeks to calculate to the specified accuracy

(2) |oshl ey < I20|e , for a1l i
(7kv)

This distinction between accuracy and stability is sometimes important.®©
Perhaps the easiest way to describe the situation for those unfamiliar with it
is to give an example. Consider the equations

|

wl = —1.38w-l - O.8lW2

’ (75a)
W2 = -2.16Wl - lo92W2
with the initial values
w1 (0) = -2.9905
(75b)
w5(0) = 4,0010

nonequilibrium fluid flow.
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For many purposes the step size h = 0.2 is perfectly acceptable for solving
this problem in the range, say, O < x < 10, using a predictor-corrector method
for which lkh|c = 0.61. For the equations as presented, the reason is cer-
tainly not obvious., But if the eigenvectors of the equations are formed by
the relations

Wy = bu; = 3up
} ('76)
Wo = lOul + )4-1,12
one can show equations (75) are equivalent to
?
u = -3w
1 / (773)
U = -0.31,12
with the initial conditions
u, (0) = 0.0001
} (770)
us(0) = 1.0000

The analytic solutions of these are, of course,

0.0001e~3%

Uy

~0e3X

Uz = 1.0000e

Now suppose we are not interested in values of u; and us when they are

< 0.0001. As we have seen, the stability of predictor-corrector methods, when
applied to simultaneous equations, depends upon the "worst" eigenvalue of the
differential system, in this case -3. Since -(-3)(0.2) = 0.6 < 0.61, stabil-
ity is assured. This corresponds to the second condition in (7ib). As far

as the required accuracy is concerned, stability is all that 1s necessary for
uy, since it is smaller than the allowable error to begin with and, being
stable, cannot grow. The accuracy of uz will be acceptable for any method
that makes Ierx < 0.0001 for Ikhl = 0.06. This corresponds to the first
condition in (74b).

Of course, if the initial conditions for equations (75a) are changed to
w1 (0) = 2.0000
wo(0) = 6.0000

the situation is quite different. Now the analytic solutions are

1.0000e ~3*
0.3X

R
us = 1.0000e”

and in the interval O <x < 3.1, up > 0.0001. To get the same resolution as
before, the step size would have to start at 0.02. By the time x ~ 3.1, how-
ever, a step size of 0.2 would again be satisfactory.
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Clearly, the importance of these considerations depends upon the size
and complexity of the set of differential equations being studied. We can
calculate, however, the most one can gain by using the necessary conditions
(74b) rather than the sufficient conditions (Tha). Let |%a| represent the
largest eigenvalue or frequency (i.e., |%a| = (l%l, Iul)max) we wish to
resolve in a given problem. Let the maximum*t step size be given by
lh%al = 0.03. Consider the two curves in sketch (c). They represent the
maximum step size for a given A
h“ determined on the basis of accurac
Il /I (0.03/|A]) ana stability (|an|./|N]),
where |Kh|c is the stability bound-
ary of the numerical method. If Ac
is the negative eigenvalue largest in
magnitude and we wish to resolve it,
then |Aal > |Ac| and the accuracy
curve governs the step size, giving
h ;e However, if lka < i%cl it
may be possible to increase the step
size until it is governed by the
stabllity curve, giving hysyxe It
| is impossible to increase h further
— by the methods discussed in this
‘ el el report. Under these conditions the
ratio of the maximum to the minimum
step size is

Pmax |

hmig

|
|
l
|
|
!
|

1Xal <[Ael
Sketch (c)

||,
max _ X (78)
min ¢

h
h

which has a significant effect in the solution of lengthy problems.

Some examples.~- Next, we construct the unit circle in the complex plane
and plot in the same plane the roots to the characteristic equations for a
variety of predictor-corrector methods. In each example the roots are calcu-
lated for a step size equal to zero and the locus of these points is indicated
by flagged symbols., The step size is then incremented by 0.1l and each root is
recorded accordingly. The number of points plotted varies because of scale
limitations, but in no case does lkh exceed one. The value of w 1in the
representative equation u' = e'®”u is varied through the range = > w > n/2
to study induced instability, and through 0 > w > - n/2 to study the region
of inherent instability.

The location of the principal root under these conditions is shown in
figure 1, This root must, of course, be common to all methods, and a measure
of the accuracy of a method is displayed by how closely one of its set of
points falls on those in figure 1.

1l3imple two-step methods with ery Az ery ~ 0.01(h\;)* are available.
If lhkal = 0.03 such methods have an error ~0.81(10)~8. Smaller step sizes
in these (or more accurate) methods in a machine using eight -place floating
arithmetic would be useless.
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Figure 2 represents the method resulbting from the combination of a four-
step, Adams-Bashforth predictor (row 5, table I(a)) followed by a four-step,
Adams -Moulton corrector (row L4, table I(b)). A1l of the spurious roots lie
on the origin at h = 0, forming a triple root there and causing the varlatlon
of the roots with h to be quite different for small h (OA;/Oh - ch “2/38 g
h-~0, i # 1) from what it is for h ~ 0.1 and higher. The method presents no
stability problem.untll ikh‘ >0 .T. Beyond this value a spurious root exceeds
unity for A = %i. Notice that the upper left-hand circle (A = -1) shows the
method is stable for A even less than -1.0 for real eigenvalues. This is a
case for which a stability analysis that makes use of only real A would give
gquite erroneous results regarding the value of a method for general
simultaneous equations.

Figure 3 displays the root structure of Hamming's method without modi-
fiers (row 6, table I(a), and row 6, table 1(b)). Four roots are involved
and two of the three spurious roots do not fzll on the origin at h = 0. When
A = -1, one of the spurious roots starts at 0.422 and proceeds in a positive
direction along the real axis for increasing h. It crosses the principal
root at h ~ 0.265 causing a degenerate instability there. For Ah < -0.5 it
falls outside the unit circle and the method becomes definitely unstable,

This is a case for which the general stability boundary is determined by
considering only real eigenvalues.

The method Hamming finally proposed, and the one usually programmed and
referred to by his name, uses two "modifiers." An analysis and discussion of
modifiers is given in the next section, where it is shown that Hamming's
method with modifiers is equivalent to predicting with row 7, table I(a) and
correcting with row 7, table I(b). The roots to the characteristic equation
for this method are shown in figure L. The root structure is completely dif-
ferent from that shown for the unmodified method. There are now five roots,
One of the four spurious roots lies on the origin when h = 0. The eigen-
value limiting the stability is now complex, occurring when A = e2in/3  gpng
the stability boundary is |Aa| < 0.6, slightly greater than the unmodified
one.

Typical of what can be done to increase the stability of these four- and
five-root methods is shown in figure 5. This figure illustrates the roots to
the characteristic equation for a method proposed by Crane and Klopfenstein
(ref. 11) which amounts to using the four-step predictor in row 8, table I(a),
and the four-step Adams-Moulton corrector (row %, table I(b)). For this
method, all of the spurious roots fall in the unit circle for [khl <0.9.

The classical Milne method (row 6, table I(a), and row 5, table I(b)) has
the characteristic roots shown in figure 6. Four roots are generated; two of
the spurious roots lie on the origin and one at -1 when h =0, (So, in our
terminology, it is a Milne method, but not a total Milne method.) Tt is well
known that the corrector slone is unstable for sll negative Ah. Chase
(ref. 3) showed that for real Ah the combined, predictor-corrector process
is stable for -0.3 > Ah > -0.8, a conclusion which is represented here in the
upper circle on The left. Clearly, however, a glance at the entire left
column in the figure shows that for almost all complex eigenvalues with
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Figure 4.- Hamming's method with modifiers.
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Figure 6.- Milne's method without modifiers.



negative real parts, the Milne predictor-corrector method is unstable for all
h > 0, This result is also presented in reference 11,

The necessity for considering the stability problem in the entire complex
plane has certainly been demonstrated. We will present one more example,
however, since it provides a background for some of our subsequent discussion.
Consider the total Milne method composed of the two-step predictor in row 10,
table I(a),followed by the Milne, two-step corrector (row 5, table I(b)).

This method has been proposed by Stetter (ref. 9). Since now both the predic-
tor and the corrector have only two steps, only two roots appear in the char-
acteristic equation. They are shown in figure 7, the left and right columns
of the previous figures being collapsed into two circles for convenience.

For all real Ah the method is stable for 0 > Ah > - 1. Tt is the most
accurate comnventional (i.e., incomplete) predictor, one-corrector method

that can be devised for arbitrarily small h (eru and er) are given in

table II(k)L and may be used if one is sure that all the eigenvalues of the
differential equation are real. As the left circle in figure T shows, how-
ever, like the classical Milne method, it is unstable for all imaginary
eigenvalues.

Negalive X Positive A

-~ S o
er, 0O(h=)

~ O(h5
e, O(h?) a

Figure T7.- Stetter's two-step method.

METHODS WITH MODIFIERS OR NONFUNDAMENTAL FAMILIES

Incomplete, Predictor, One-Corrector Methods
With Modifiers

Only fundamental families were used to construct the methods studied in
the preceding section. It is quite possible, of course, to hold in memory,
and subsequently use, combinations of u and u' which were calculated in a
previous cycle of computation but are not members of the final families. The
equations relating these combinations are often referred to as modifiers. In
the terminology of this report, using a modifier corresponds to constructing
a Tamily that is not fundamental. The principal purpose of this section is

to show (by operational methods) that modifiers are artificial in the
following sense:

49



Any method® with modifiers or nonfundamental families can be
identified with a method without modifiers composed only of
fundamental families.

One of the simplest types of modifiers is that which welghs only past
families of the dependent variable and not its derivative. It requires no
further iterations, but it does, of course, require more memory. The set of
difference-differential equations with modifiers that we will now analyze can
be written

( ) k+1

1 t 1

Up+k = ;7 (“jun+J + h@jun+J) (79a)

j=2

Uéf% = Tzunik + Tsugf%—l + T4ugi%-1 (790)

k+1
(3) _ 1 (2) ! N N 1 1

Up+k = hBiup+k  + (Bjuntg + hBjuntg) (79¢)

j=2
3
Untk = Ulur(1+l)< + qur(ylrl)c + dsugiﬂ—l + 041«1513?2{-1 (794)

Equations (79a) and (79c) are the conventional predictor-corrector equations
studied in the previous section. Equations (79b) and (794) are the modifiers,
weighing previously calculated, nonfundamental families by the constants T3
and oj- Applying these equations to the representative equation and intro-
ducing the operator E, one derives the matrix equality

M EX 0 0 o ﬂély N
k-1 -
“ToEE - T, o B o | |ul® nalo
= Apd*™"
3
0 “AhB.EE BS Cg ug ) g
k k- -
-02E" - 04F * 0 —dlEk - 02Ek * EkJ un_J 0
- -~ (80)
where kt+1 k+1 ]
Co = Z (g + 7\hor,J3)EJ Fg = Z oc,j'eJ“h
Iz I=2 (81)
k+1 k+1
= Uy _ t Juh
CB = EEI (Bj + KhBJ)E Fg = }: Bje

j=2 j:l -

complete ones.
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If we solve equations (80) for u,, we can divide out EE-1  from the first
and third columns, and EX from the second column. There results

kt1 ktl 2
Ek+2 _ Z EJ i Lrﬁj(%h)m_l up = hAeLlhn Z eJuh Z Rrerij(?\h)m—l (82)
J=0

m=1 j ==1 m=1

where L and R* are fairly simple combinations of the constants o, T, B,
and o in equations (79). It is clear that, if we set

ke =k + 2
I L,
42 = Ly
9 Y (83)
Rm) j+2 = Bmj
Je =ke + 1 -]
equation (82) can be written
k._e_:‘i'l 3 ke+l 2
gfe . Z gle Z Ly (W) "7 5wy = nacHBn Z eJehhh Z Ry (A0)™7" (81)
j=2 =1, j:l =1

Except for the subscript e, this is the same as equation (50), the opera-
tional form of the difference-differential equations (43) and (L45), composed
only of fundamental families. Thus the k-step method with modifiers given

by equations (79) can be identified exactly with a higher step method without
modifiers.

More general forms of modifiers, weighing more past families of the func-
tion as well as its derivative, can be analyzed. They would simply increase
the number of terms with powers of E 1in the square matrix in equation (80)
and lead to characteristic equations in (82) of higher order. By substitu-
tions similar to those in (83), the final operational form can be again iden-
tified with equation (50). This correspondence of methods (as they apply to
linear differential equations) is always established when the operational
forms are identical.

Hamming's Method With Modifiers
A good example of equivalent methods, one using two modifiers, and the
other using no modifiers but having one more step is given by analyzing

Hemming's method as it is usually programmed (see ref. 2). Hamming's
modified method can be written
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(1)

Un+a

|l

| 1
up + 'gi h<2u;l+3 - Un+2 + 2un+l>

(2) (1) 112 /(1) (3%>

Un+e = Unts - Jo5p \Unt3 - Unts

(85)

23! !
ugii = %-[9un+3 - un+1'+3h<ﬁé+i + 2u-111+3 - un+é}}

£
121

il

Un+4

(1) (a)-
[9U.n+4 + llEun+4J J
By a straightforward calculation, using the formulae in the previous section,
one can show that these have the coefficients in an operational form given by
table ITI(c). Using equations (51b), we immediately find two difference-
differential equations that have the same operational form. These are

(1)

L 1 t 1 1
Unss = Untsa + Unkl - Un tox h(2unes - 3un+s + 3untz - 2un+a)

i)! J
Upss = -]_,]2__]_ [126u1’l+4= - l)-Fun+2 + 9U-r1+l + h(l-(-gu]g_'_g + 108111"1-]-4 - 5)‘1'11{«1_*.3 + Euun_}.z):I
(86)

Equations (86) represent a conventional, five-step, incomplete, predictor-
corrector method composed of two fundamental families which, except for round-
off errors, gives results identical to those obtained using Hamming's modified
method when applied to equations (11).

Discussion

Consideration of the previous sections raises the question as to the
nature of the relationship between families and steps. In what was just pre-
sented, a five-step method was duplicated by a four-step method with addi-
tional families. How far can this be carried? The answer 1s that any k-step
method can be reduced to a one-step method if the number of families is
increased appropriately. (The converse is not true; the minimum number of
families is the number of iterations in incomplete methods and one plus the
nunber of iterations in complete ones.) The next question that arises is
whether or not this introduction of families serves any really useful purpose.
After all, any given method basically evaluates a polynomial of a certain
degree using an amount of data stored in memory necessary to attain that
degree. From this point of view, there is little difference between a method
expressed with modifiers and the same method reduced to fundamental families.
Possibly, a few storage locations can be saved and a few arithmetic or logic
manipulations eliminated by using one or the other. Most likely, roundoff
accumulations will differ, but these are not considered here.
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There is quite anobther point of view, however, from which the family
concept can play a valuable role. One can show that, if the proper families
are constructed, any polynomial method can be reduced to a several-family,
one-step method, the step size of which can be changed at will after each
advance. To derive such constructions systematically, however, requires a
theory that falls outside this report.

COMPLETE MULTISTEP PREDICTOR-CORRECTOR METHODS

Introduction

We define complete predictor-corrector methods as those in which the
final values of the function and its derivative are not members of the same
family. A k-step, two-family, complete method is represented by the two

equations - ;
ugil){ = Z <oujun+J + &'jut(ligr + @+ hugliJ
(87)
LGy _ () o ()
Untk = Bihuptk  + Z <Bjun+J + Bjun+J + Bjhun+J
Jj=2 J

This method requires only one iteration per step. Thus, if the calculation
of the derivative dominates the computing time, when compared to incomplete
methods, complete ones can

(1) Use twice as many steps for the same amount of computing time, or

(2) Cover the same interval with the same step size in half the
computing time.

We seek to find whether or not, on the basis of accuracy and stability, these
gains are real or fictitious.

Notice that equations (87) are not composed of (what has been defined in

1
this report to be) fundamental families, since both upy+g and upeJ are
retained in memory. Complete methods that use only fundamental families would
be

(1) k+1
L E e (1)
Unik = (a‘jun+J + ashupyg >
J=2

(88)
k

1 O (1)
Blhun-l-k + z <BJu-n+J + BJhun+J

Un+k
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for one iteration, and 1
k+1 .
() _ . (@)
Untk = OjUn+g + Gjhunsg
L1
J=2
k+1
(2) 1 (l)' 1 (2)' r
un+k = Bahuptk + <ﬁjuﬂ#J + thun+J:> (89)
Jj=2
k+l
(2) . (2)! c(2)!
Uptk = 7iUnt+k + 7ihupgyx + <7jun+J + 7jhun+J;>
j=2

for two iterations. We show in the next section that almost all operational
forms given by equations (87) can be constructed from some form of equa -
tions (88).

Analysis and Discussion

Introduce the representative equation (37) into equations (87) and there
follows the matrix equation

k+1 k+1 10 7 k1 7
k — =t _J J 1 1 Juh

E - Z (CLJ +7\h(1J')E - z (LJ'E 'th(l ) z ase M

J= J=2 = ppthn| =2

k+1 k+1 k+1
— T pa—

J\hB;’LEk—y(Bj+ By E  E - Z B8 || wy Bl 4 Z Byelhh
L J=2 Jj=2 L N =2 ]

(90)

Compare equations (90) and (49) and the difference between the incomplete and
the complete methods begins to appear. The left column in (49) contains the
term E* which can be factored out, leaving a characteristic polynomial of
order k. In equation (90) no such factoring can be made, the left column

is completely (hence the terminology) filled with terms EEK, EX™1, . . ., E°,
and the characteristic polynomial is now of order 2k.

Solving equation (90) for w, gives the operational form

2k+1 2k+1
- 41 =3
EZK _ z (LlJ + 7\hL2j)E2k'+l J Uy = hAeth Z RlJelJ'h(Ek. 1 J) (91)
j=2 j:l
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where It and R are combinations of the a and B. In the simplest case when
k = 1 these combinations are

iz = az + Bz Ria = B1
Lia = &p + UpPy Riz = B2 - aéBi
— — Ris = Bols - aéE; (92)
Loz = B2 - aofBo
Ios = Bolp - GPa

Although there are exactly seven terms on both sides of the equations, invert-

ing them, so as to express o,B in terms of L,R, would be difficult because
of their nonlinear form.

If we use only fundamental families, equations (87) reduce to equa-
tions (88), and the combinations

Ly =By T
J' -1
—t H \ | =! =!
sz = &y + Blaj + (Biqj+l—i - C"]'_Bj+l-i) (93)
i=2

1 .
Ri1 = Bz » le = Bj ’ J =2,

J

are formed. But these equations can be inverted, in general, since

-1

1 .
Bx = Ri1 By = Rij » By =Ing > J =2, . k+ 1 (9ka)
and j-1
—! - |
%y + Rypoy + }: (Rajouger-i - Luy®i) = Loj , =1 .. ., 2k + 1

i (9kb)

the latter being a set of linear simultaneous equations for o. For example,

if k = 2, equations (94) reduce to

B1 = Ri1 Bz = Riz , Bz = Lno
(95a)

—l

Bs = Ris , Bz = Ins

and
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B 0 1 0 |fas] |Lool
Rip Ria -Li2 1||os Les (95b)
Ris Rio -Ins Lys| |T2| = |Loa
K Ris 0 -Lng _a;,_ | Les |

respectively. In this inverted form L and R are arbitrary and, in partic-
ular, Lsg and Los can be equated to zero. This leads to a set of equations
from which o and B (coefficients in the difference-differential equations)
can at once be derived for any combination of In and R on the left side of
equations (93), provided only that the determinant of the matrix in equa-
tion (95b) is not zero. In other words, except for the restriction just given,
any operational form contained in equations (87) for k = 1 can be identified
with an operational form from equations (88) for k = 2. This situation
remains true for higher values of k, so that equations (88) are sufficiently
general to represent almost®® all complete, two-family, predictor-corrector
methods. TFurther, the relations between the coefficients in its operational
form and the coefficients in the difference-differential equation can always
be inverted by means of equations(9h), provided only that the determinant of

(9kb) is not zero.

The accuracy and stability of the two-family, complete methods can be
studied using the same analysis as that presented for equation (50). For the
complete case, simply set Lsj and jo equal to zero. It 1is apparent from
equations (50) and (91) that a k-step complete method will have accuracy and
stability features associated with a 2k-step, incomplete method. Superfi-
cially, this appears to violate the Dahlquist criterion, When the latter is
applied to operational forms, however, we see that in reality no such viola-
tion occurs. The difference in stability between complete and incomplete
forms is discussed later.

Examples

An example of a complete, two-step, predictor-corrector method contained
in equations (88) is \

) [t + - )+ )]

Unt2

(96)

1)’ ' '
Unye = Unp+1 + ih§ <5u§1+g + 8111%% - ulgll) >

investigated.
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The coefficients in its operational form are

\,_.Lma N
m ol 3 v | 5] 1]2] 3[k]5s

1 |2k l 0 wol6l-2]0}o0

0 0
2 |55 ]—59 37 l-9

|Divide by 24

1
ery = i§§|¢3(u - NE* R er) ~ o(H>)

and the error terms, referenced to the computing step h, are
er,. = 2 (un)* er,, = -= p3n? ery ~ 0(h>) (97
b = ap Wh)T pe = TRL MR A

Equations (96) employ a two-step predictor and an Adams-Moulton, two-
step corrector; and they have Adams-Moulton type stability. An incomplete,
two-step, predictor-corrector method using the Adams-Moulton corrector can be
written

(1)

Upto = —2.8U.n+l + 3-811n + h(3-ll-u;1+l + l-)-l-llln)
(98)

h (l)' ' '
Untz = Untl + 75 Supte  + Bupy1 - up

and the coefficients in its operational form are

| Imj | PBmg
m 2 311 2 3

1 12} O} 5 8 1-1

=
2 6l18lofir| 7
3 1171 7

Divide by 12

1
er, = §E~u3(u - X)Hé s ery ~ o(u>®)
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The lowest order error terms for the method given in (98) are identical to
those given in equations (97) when referenced to the computing step h. (To
order h* +this is the minimum possible error 1if an Adams-Moulton corrector
is used.) We see that equations (96) have the same (lowest order) accuracy
as equations (98), but require one less iteration per step.

For a fair comparison, the error terms in all methods should be refer-
enced to the representative step size H, defined as the distance the solution
is advanced by two iterations. For equations (96) we have

_ 1
h = 5 H
and for equations (98)
h==H

A remark is in order here with regard to the adjustment of er; and
er to conform with the representative step. Since we are now concerned
with the efficiency of a method as it applies to the complete calculation of
the differential equations, the global, rather than the local, error should
be used as a measure. This will account for the fact that if one method uses
half the step size of another, it commits its local error twice as many times.
Hence, if in general, h = Ha
eru(hn) - i-eru(aan)
(99)

and
erx(hn) - % ery) (alH?)

Errors referenced to H are given for the two methods in tables follow-
ing equations (96) and (98). Clearly, on the basis of accuracy, the complete
method is to be preferred, having 1/8 the error of the incomplete method with
the same corrector. Since both have Adams-Moulton type stability, all the
spurious roots vanish at h = O. There remains the question, however, regard-
ing the magnitudes of the spurious roots for h % 0. The characteristic
equations DE(E) = O for the two methods are

2UE* - (24 + 55M0)E® + Ah(59E2 - 37E - 9) = 0 (100)
for the complete method and

12F2 - (12 - 6A\h + 17A2h3)E - (18 + T7Ah) = O (101)

for the incomplete one. We at once see the complete method has two more
spurious roots than its counterpart if h # O. The magnitudes of the roots
for real and complex Ah are shown in figures 8(a) and 8(b). In terms of h,
the calculation step size, the complete method has induced instability when
|Ah| > 0.3, whereas the incomplete method has no induced instability until

I%hl = 0.5. However, if we again refer our measurements to the representative
step size, the boundaries are |AH| = 0.6 and IXHI = 0.5, respectively.
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(a) Complete, two-step, one-iteration method given by equations (96).

Figure 8.- Stability plots for two different two-step methods.
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(b) Incomplete, two-step, two~iteration method given by equations (98).

Figure 8.- Concluded.

In summary, if the evaluation of the derivative dominates the computing
time, then, for the same computing time, a complete method with the two-step,
Adams -Moulton corrector is more stable than, and has about 1/8 the error of,
an incomplete method with the same error. The statement regarding error is
based on only the first term in a series expansion. BExperience indicates it
is not reliable for |An| > 0.1,

GENERAL ANATYSTS OF INCOMPLETE MULTISTEP METHODS
WITH MULTIPLE CORRECTORS

Derivation of the General Solution for a Fixed Corrector

The process defined by equations (43) and (4L) can be generalized such
that, during the same cycle of computation, an arbitrary number of correc-
tors -- that is, an arbitrary number of iterations -- is used. Even when
each of the correctors is different, the general solution can be derived by
the technique outlined below. The solution is quite complicated, however, .
and does not appear to be of practical interest., The special case, when two
correctors, both different, are used, is analyzed later in this section., If
all the correctors are the same, the general solution has a rather simple !
form; and it provides us with the ability to study the effect of the number
of iterations on the accuracy and stability of a method.

The equations for the fundamental families of an incomplete method in
which m - 1 correctors are used, all identical, can be written
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( k+1

1)

Upte = Z (O"jun+J + hCL:ju];H_J)
J‘:

( O
2) 1)!?

Upsk = hBiunvik  + E: (Bjunts + hBjunty)
J=2 » (102)
k+1

t (m‘l)' vy

Unte = hBruptk © + (Bjuntg + hPjuntg)

j=2

Using the notation defined in equations (81) we introduce the representative
equation and the operator E and derive the matrix equation

o I
i 0 0. .. 0 o | [l F,,
0,5 B 0 0 g | |ul? g
0 -bpyES B 0 g | [ul®] = andshn| 7, (103)
k k
0 0 0 . . . -b4E ES - Cpl| uy FQJ
where .
by = AhPj (10k)

Expand the determinant about the right-hand column and the characteristic
equation simplifies to

- -3
DE(E) = EX - Cgbi™ - Cplby ™ + Y™ + . . .o+ 1]
k m-1 1 - bt
=E - Cgbr - Cp 77— b = 0 (105)

Introduce the notation
L

_ .bm—l

1 - by

1l

j (ay + %hab)b?’l + (Bj + KhBé) =
(106)

-1
a,'-bm_l x n
b1+ Bj

Rj
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and the operational form turns out to be

k+1 k+a
S - y L:E > uy = Ane™" Z RjeJ“Lh (107)
AN |
2 j=2
£ k+1
B - z LjEJ = (E - M)(E - N\2)
the complete solution can be written k+1
Juh
E: Rje
_ n n whn j=2
Up = 01(7\1) + 02(7\2) + . + . + Ahe Tt (108)
LR
j=2
The case = 1 represents one iteration per cycle of computation, that

is, a predictor w1thout a corrector. This follows from equations (106) since
BJ and BJ disappear from L and R; when m = 1. On the other hand, if

m - o, the equations are 1ndependen€ of %3 and aJ (provided Ibll < 1, which
is a necessary condition for the convergence of the iterations), and the
corrector equation in its implicit form emerges.

A Discussion of Some Simple Predictor-Corrector Methods

If we use equation (108) to inspect the simple predictor-corrector scheme
(an Euler predictor followed by a modified Euler corrector)

(1)

_ 1
Up+i = un + hup

(2)

Uﬂ+l

1
u, + % ur(hltl + ulll>

n /(2
42 v B )

we find the complementary solution to be after m iterations

n
m+1
14 2<7‘h>
u‘nc = Cl (109)
15
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This result serves as an excellent example of the danger of analyzing a
corrector, ignoring the effect of a predictor. If the modified Euler method

is studied alone -- as an implicit identity -- one finds the complementary
solution n
Ung = CI[MJ (llO)
1 - (W/2)

instead of equation (109). This shows at once that the modified Euler method
is stable for all negative values of Ah (see ref. 12). But clearly, as m
becomes large, equation (109) reduces to equation (110) only when |Aa| < 2.
Hence, when used as a corrector in a predictor-corrector sequence, the modi-
fied Fuler method—(br trape201dal rule as it is sometimes referred to) is
violently unstable for Ah < -2.

A further study reveals that ery and er) for the Euler-modified-Euler
method behave in the following manner for increasing numbers of iterations in
a cycle of computation

il STy erA

1 -n2(u®/2) -hZ(N2/2)

2 n®@® - 3n®) /12 -n®(3%/6)
3 n®(u®/12) h2(2%/12)
o h®(u3/12) h®(2\%/12)

This method is often used in programming the "method of characteristics" in
the study of hyperbolic partial differential®® equations. It is of interest
to notice:

1. The order of error in the predictor is one less than the order of
error in the corrector, but the order of error in the method is the
same as that for the corrector after one application of the
corrector.

2. The coefficient of the h® term is improved by a second application
of the corrector.

3. The error, as measured by the lowest order in the truncation, is not
further reduced if the iterations are continued.

If the Euler predictor is replaced by the Nystrom predictor (row 2 in
table I(a)), the error sequence with iterations is

1%hen more than one independent variable is involved, the reference
step H should be redefined.
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m ery EI'A Spurious root
1 -n®@®/6) -n%(a\%/6) -1+ Aa

2 h3(n8/12) h2(A\3/12) -%—xn

w  B2W%/12)  1(2%/12) -

Here, we see that the predictor by itself has the same order of error as the
corrector but is less accurate, and, further, is unstable. One application of
the corrector (a total of 2 iterations)

1. Increases the accuracy such that no improvement on the coefficient
of h® 1is made by continuing the iterations

2. Produces a stable numerical method.

Basically, this process is the one used in several computer programs to solve
for the flow in front of blunt bodies travelling at high speeds.

Incomplete Multistep Predictor Two-Corrector Methods

Next, the incomplete methods previously analyzed are extended by adding
one more corrector with arbitrary coefficients. Only a brief sketch of the
procedure is given here, mostly for the sake of thoroughness, since the prac-
ticality of using two correctors is open to question. However, the added cor-
rector has a decidedly stabilizing effect. In fact, 1t i1s shown that, for
two-step incomplete cases, a stable, two-corrector method can be constructed
having error terms one order higher than is possible for stable, one-corrector
methods.

Development. - The three fundamental families are

k+1

(1)
Untk = (@5uneg + hajup,y)
|

j=2

k+1

(

1)’
hByupiic  * j;1 (Byunsg + hBﬁuﬁ+J) (111)
J=2

(2)

Un+k

k+1

(2) r (2) .
Unik = 71Untk + hyiumik o+ (7 50ty + hy juntg)

j=2

where, by the argument used to derive equation (h5) B1 can be made zero with-
out loss of generality; but, by the same argument, the term containing 73
cannot. Although a weighted value of the middle equation (111) added to the
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final equation can be made to cancel the term 1nvolv1ng un+% (similar to what

was done in equation (44)), a term containing un+ would then appear
amounting to a method different from that given by equations (111) with
71 = 0.

Paralleling the one-corrector case studied in a previous section, one can
construct a matrix equation and derive the operational form. There results

k+1 k+1

Z o Z Ly (N0) ™ huy = Andt™ Z eHB ZLRmJ(M)m < (112)

=1

from which

k+1 4
DE(E) = ES - 7 o Z Lmj(M)m_l (113)
j:é m=1
and
k+1 3
= nln - ) Z THB Z Ry (an) ™" (11k)
m=1
For j = 2} 3) L (Since LllJ L21} e . . = O)

[
I_I
|

3 = Bava *+ 7
Lzj = @jBiyy + Biya + Byyi + 7}
Lay = @55i71 + “jBi?i + Bé7i
Ly = a3B171
and for j =1, 2, (115)
Rijy = 5571 + 75

1 1 1 1
Rzj = @jBiya + Bj7a

Raj = Lgj
These equations uniquely determine L and R, the coefficients in the opera-
tional form, for given a, B, and y. Once again, the accuracy of the method
is represented by equations (63) and (68), and the stability depends on the
magnitude of the roots to DE(E)

Equations (115) can be inverted if 71 1is set equal to zero. Thus
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ay = (Lay - Rz23j)/Rex @5 = Lyj/BRen
By = (Lzy - R13)/Riy 53 = Rpj/Ru1 (116)
73 = I 73 = Fag

and difference-differential equations that represent any operationel form for
which R;; and Riz are not zero can at once be written. The practical
consequence of these limitations is not known.

To find the error in the particular epolution, the numerator of (58) is
expanded In powers of Ah. In this case Rsj = Laj and the coefficient of
the A2h® term vanishes 1ldenticelly. Choosing the L and R s0 the coeffi-
cients of the (An)°, (Ah)?, and (Ah)Z? terme are zero gives, respectively,

k+1
1-1 N L2
Z[l(k«r-l-j) Rig+ (k+1-3)Igy]l -k =0,
j=2 1=0,1,2, .. .,L (117a)
e+l
.y -1 4 L :
z [l(k'i' 1 - J) jo + (k"}‘ 1l - J) (Laj -le>] =0 ,
j=1 1=0,21,2, - . ., L -1 (117v)
k+l
L L=1 L
Z[z(k+l—g) Raj + (k+ 1 - J) (Isy -Rej)]l =0,
Lot
’ 1=0,1,2 ...,L-2 (117c)

which are the accéuracy conditions for eguations (11ll). One can show that, as
in the single corrector case, both the particular and complementary solutions
are T1t locally by polynomials of order L 1if the above conditions are
satliefied.

The leading terms in the series expansion for ery are determined by
evaluating for 7 = L + 1 the remainders in the expressions -- Egey are no
longer_equalities -- (117) multiplying these remeinders by (uh) J'/(l‘, + 1),
Rh(uh)L/L!, and MhZ2(uh)L-1/(L - 1)!, respectively, and dividing each by
k+1 :
§E<j - 1)Iny as in the development of equations (6L) and (65).

A=

The derivation of the error in the complementary term is ideuntical to
the derivation of equation (71). Thus one can show
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k+1

(7‘h) Z [3lLy 5 + WP Dag+ 2(2 - 1)30BLas+ 1(1- 1) (2 - 2)Jt =Lg4] - K
= =2
ery = P
(3-21)In
Jj==

(118)
Finally, to compare fairly with other methods, all errvor terms should be
expressed in terms of fhe representative atep H where
= 3H/2 (119)
and the adjustmente are made according to equationz (99). :

Example.- The incomplete two-step, double-corrector method given by

513!-5 B’l§ [ -2hBupty + 33Tup + h(3021i1!1+1 + 12411;1)]

L
242) - 3$ [ 432y + 80Tuy +h<89ui+i + 78Bupey + 3osun>:| (120)

-

1

.. hf (2
Unta = Un + 3‘ <U.n+2 + Ll-lln+1 + 'U.n J

has the operational form represented by

J Lim Rim
n 2 3 1 2 3
1 0 [ 1125| 375 | 1500 | 37>
2 | 1068|1182} 89 | 788 | 305
3 540 | 6h2 0| 302 {12k
L | 302 124

| Divide by 1125 | -

er, = (0.028u% - 0.040uA - 0,020A%)u2H®

-0.0320\%%>

n

e

The acéuracy of the method as measured by the computatioual step size iz given
by
(0.005TuE - 0,0080N. - 0.0040AZ)u3nS

s (121)

Il

ery = -0.0063A\°h>

and as measured by the representative step size as shown in the table,
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There are two roots to the characteristic equation

112582 - E(1068Ah + 5L0AZh2+ 3023°%h%) - 1125 - 1182An - 6L2AZhZ - 12M%h° = 0
(122)
and they are shown in figure 9. The spurious root starts on the unit circle

Negative X Posttive A

er,, = 0.0056,°h>
er,= ~0.0i0 Auhd
eru,= 0.0012 )87

er, = 00056,
er,,= -0 010X *h®
o= 0001432

.
LYY
4a
a

a o0
00000000 0

Iy

+

er,, = 00056 5°h°
er,,= =0 010 1p*h
etu,= 00016:53H°

o] k4]
Siw /6
S

o

e4m/G

Figure 9.- Stability of predictor, two-corrector method given by equations {120).

at -1. Although it is impossible to tell from the figure, a close examina-
tion of the results shows that the spurious root moves into the unit circle
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for all complex A given by AN = e'” for which /2 < w < 3x/2. Further,
the spurious root remains inside the unit circle for |%h| < 0.57, or

|KH|1£ 0.38 which establishes the stability boundary according to equa-
tion (73). This serves as an example of a total Milne method (all the spurious
roots are on the unit circle when h = 0) that has no induced stabilities for
a range of h > 0. The stability boundary can be increased to at least

?H e = 0.56 if the maximum error is allowed to increase by a factor of about
3/2.

COMBINED RUNGE-KUTTA AND PREDICTOR-CORRECTOR METHODS

Introduction

Now let us consider the overall result of increasing the number of iter-
ations in a cycle of computation. In the analysis of the equation u'= F(x,u),
it 1s clear that each successive iteration requires the re-evaluation of the
term F(x,u) at a value of u different from any used in previous iterations.
As the number of iterations increases, appropriate choices of a, B, 7, etc.,
permit us to match the final result with a Taylor series expansion of F(x,u)
in the u direction through any given order -- regardless of step number. In
other words, the accuracy of fit to the complementary solution depends on
both the step number and the number of iterations; and its series expansion
can be matched with arbitrary accuracy by increasing either the one or the
other independently.

Next consider the particular solution to the differential equations.
Conventional predictor-corrector formulas are constructed using a fixed and
equal spacing of the independent variable, x, a spacing we have designated as
h. In such cases the number of samplings of F(X,u) in the x direction is
determined entirely by the number of steps used in the method. No new infor-
mation regarding the variation of F(x,u) with x 1is supplied by increasing
the number of correctors in a cycle of computation. ©Since, in general, the
error associated with a method must depend on its worst fit to either the
particular or the complementary solution, equilspaced, predictor-corrector
methods are limited in accuracy by their step number, regardless of the number
of iterations.

Clearly, if both u and x are varied in the successive correctors, the
complete series expansion of F(x,u) in both x and u can be matched to an
indefinite order, and arbitrary accuracies to both the complementary and par-
ticular solutions obtained. The development of this concept leads, at once,
to equations that merge the predictor-corrector and the Runge-Kutta methods.

On the General Form of the Equations

One can write a set of difference-differential equations that represent
a complete, combined method with k steps and m iterations. The result
would be a set of formulas in which all families of all the values of the
function and its derivative calculated in a cycle of computation and held in
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memory are weighted with appropriate values of «, B, 7, etc. (see, e.g.,
ref. 13). By considering only the two-step case, we will see the complexity
involved in such a completely general expression. ZFor the practical purpose
of actually constructing methods with fixed acguracy and stability, much
simpler subsets of these general expressions appear to be satisfactory. The
real crux of the problem of constructing optimum methods depends upon whether
or not a set of equations can be found that explicitly relates the coeffi-
cients in the difference-differential equations to the coefficients in the
operational form (e.g., egs. (51b), (94), and (116)). This question, in turn,
depends upon how the operator E is brought into the matrix equation from
which the operational form is constructed.

The discussion of combined methods is more readily presented if we
consider simple sketches in which the following symbols are used:

(1)

0O predicted value of the function, u

derivative of the predicted value, dull)/ax

A
Q corrected value of the function at a point previously predicted, u
¢ derivative of the corrected value, du/dx

On the definition of step size in combined methods.- Using the symbols
defined above, let us construct a cycle of computation for a two-step,
predictor-corrector method (e.g., eq. (98)), and the standard, one-step,
fourth-order, Runge-Kutta method (egs. (136)

When presented graphically, as in the sketches, it may at first appear
that singling out a length h and calling it step size is a rather arbitrary
procedure. In fact, an ambiguity in the use of the words "step size" and
"step number" can easily arise when predictor-corrector methods are combined
with Runge-Kutta methods; although, as we shall presently see, the term can
be given a unique and quite natural definition that applies to the two dif-
ferent approaches, either individually or in combination.

In conventional predictor-corrector schemes, such as that shown in
sketch (d), the function and its derivative are calculated at equispaced
points only, and a value of the function is (or can be without loss of accu-
racy) "output" at each point. The spacing is quite naturally referred to as
the step size and the resulting step number can be and is used as the funda-
mental parameter in describing both the accuracy and stability of the method.
See, for example, the Dahlquist stability theorem. On the other hand, in
Runge-Kutta methods the function and its derivative are calculated at points
other than those at which it is most accurately represented or intended to
be output. In sketch (e) it is shown at the midpoint, but this is totally
unnecessary. Nevertheless, regardless of the number of intermediate points
used, or their spacing, the Runge-Kutta methods are always referred to as
one-step methods.
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ra:llculute
derivative
:
IS
] o G 0]
4 >
h h —
Ready at beginning of Predictor
cycle of computation
E ? Calculate ﬁ ?
derivative
[¢ > <
- ]
Corrector Saved for next cycle
Sketch (d)
—h ]
[——h /2 ——m=

Ready at beginning of
cycle of computation

Predictor

Predictor Corrector

The two sketches lead us
common to predictor-corrector

tion thereof. Thus

h = step size
advanced by

Corrector Saved for next cycle

Sketch (e)

at once to a definition of step size that is
methods, Runge-Kutta methods, or any combina-

i

the distance the integration is
one cycle of computation

(123)
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This definition is in keeping with the usage throughout this report and in all
references about numerical methods of which the author is aware, including the
recent ones on combined methods (refs. 13, 16).

With such a definition, step size is still a useful parameter for describ-
ing the accuracy of a method, but it no longer has any basic meaning with
regard to stability. In short, stable combined methods exist which embed
polynomlals of arbitrarily high order regardless of step number. This is
further discussed in the last section of the report entitled Stability.

When comparing the accuracy and stability of combined methods, then,
either with themselves or other methods, one must do so on the basis of con-
trolled values of such things as:

1. The amount of memory reqguired

2. The amount of arithmetic required

Examples of a two-step method.- In the following, we present a variety
of two-step methods subjected to the following restrailnts:

1. A memory of -- at most -- four values of the function and/or its
derivative,

2. The caglculation of -- at most -- two families in a cycle of
computation.

With the addition of one more family or word of memory, the accuracy and
stability of any wmethod can probably always be improved.

Method |.  Two iterations, incomplete, uncombined
(I)

— 7
Upto™ ayu i tagu +h(a2 T 3'u )

— a1
Unz =BG+ Boln g + Bauy +h (B5u] 4+ Bhur)

Maximum order New values calculated
of error for Data used in corrector in a cycle of
stable method s encircled computation

s A

m m’
Un+21 Yn+|

er=0(h%)_

/
Un+2+ Ynip

n n+i n+2
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Method 20 Two iterafions, incomplete, combined

n _ 1y ul
Yntr l’2un+l+‘13un+h(uz“'n«H + u3un)

1 /
Un42 =B, +BoUn4( +B3u, +h (Bhul 4+ B5u})

wo o
Un+rr Yndr

er=0(h)

|
{ Un+2: Yns2
I

Method 2b Two iterations, incomplele, combined

/
(n _ I — A1) [
Un+r aguy 4 +hlaguyy  Faguy o +azuy)

_=n Y I = (Y 1
U4 2B M0t #8014y + B o + By gy - + B30y )

() (o
Undrr Yn+r

er=0(h5) | |
I I Unt 20 Upt2
- =
e m——
n
Method 3 One iteration, complete, uncombined
! A
ute= apUp 4+ asuy+ hlagul) + alull)

! 1,
Un 42 =Bt L+ Botn 4 +B3uq+h (ﬁlzugllll +B85i!")

o] (o] Q
m W'
8 L -y Ung2r Uggo
=0(h?
er=0(h%) 3 %)
" — Un+2
h h
n
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Method 4a. One iteration, complete, combined

Wl = aju_, +asu +h{al ay + ’u(”l )
n+r 2+ 7 23, Hntr-1T 33042

=hg'u'l +p 0 +h(at  egll)
Untz =NBUns #8504 +Bau, + DBy +B3uny, o

|
s w ooy
| | Untrr Untr
er=0{h3) | | |
e R
IR | |
| rh -]
n
Method 4b. One iteration, complete, combined
o - N +h(,uf gl M )
Yn+r Uy + )T B3l Ot p—1 M3t -2
- 1y (n /Yy RO
un+2_h'Bllu:\+r+B2un+I+B3un+r—l+h(B2un+r'l+B3un+r—2)
F9/7
|
2 4 4 wmooa
+— i i Un4rr Untr
er=0(h5) | I l
| | | Un+2
R
e rh——]

Method 5. One iteration, incomplete, uncombined

= 1yl Lyl
Un+2 u2un+l+°3un+h(u2un+l+a3un)

er=0(h3) Un+2, Yn+2

Notice that, in each case, a cycle of computation is completed when the
integration has been advanced a distance h, and the number of iterations
refers to the total number of evaluations of the derivative in this cycle.

At first glance, it appears that the two iteration methods do not belong in
the same group with the one-iteration methods because more arithmetic is cer-
tainly required to evaluate the derivative of the corrected function and this
violates condition 2 of this section. However, this effect is taken care

of by referring the stability and accuracy terms in all methods to the refer-
ence step size H. With this important qualification, all methods 1 through
4 can be compared on the basis of very nearly equal logical complexity,
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storage and computation time, provided only that the calculations required to
evaluate F(x,u) in the equation u' = F(x,u) are equal to or greater than

1 X .
those required to find ug+% and upt+z2 1in a cycle of computation.

Method 1 represents the classical predictor-corrector sequence; for
example, an Adams-Bashforth predictor followed by an Adams-Moulton corrector.
One can show by applying the analysis presented in a previous section that no
method of this type is stable for arbitrarily small but nonzero h and for
arbitrary complex eigenvalues if the local error is O(hs). Method 2a is
typical of the combined methods proposed in references 14, 15, and 16. At the
beginning of a cycle of computation the function and its derivative are cal-
culated at the point n + r, and the derivative 1s used to repredict the func-
tion at n + 2. Neither the function nor its derivative is retained in memory.
This scheme can be used to develop stable methods with a local error of O(hs)
(see egs. (156)). The order of the error cannot be further increased since
O(h5) 1s the highest order possible for any method with a five term corrector,
and we are limited to correctors with a maximum of five terms by the condi-
tions assumed. We can undoubtedly improve the magnitude of the error and
increase the stability if we make methods (1) and (2) complete. However, this
would necessitate the addition of another family -- again violating the
assumed conditions. Method 2b falls into the same class as method 2a, but it
retains in memory the value of the derivative of the function at the inter-
mediate point, rather than the value of the function at n. A method of this
type is studied under equations (159). It is the most accurate method of all
those illustrated, having the leading error terms ery = l/720(pH)5 and
ery = 1/720(N\H)®. TIts induced stability boundary is |NH|c ~ 0.3.

Next, we consider one-iteration methods which can be made both complete
and combined under the imposed conditions. The simplest one-iteration process
is the incomplete, uncombined one composed of a single predictor, method 5 in
our case. The accuracy 1s severely limited by the requirement of stability.
If this process 1s made complete, as in method 3, the accuracy of stable
methods can be increased by an order of magnitude -- see equations (96). If
it is further combined with the Runge-Kutta techniques, as in method La, the
error term for stable methods can be reduced to O(hs) Just as in method 2a
(see eqgs. (152)). Another choice of data for a one-iteration, complete, com-
bined method is presented as method 4b. Rather surprisingly, however, this
choice is always unstable if the error is to be 0(h®). Proof of the latter
is given in this part commencing with equations (153).

A Special Class of Multistep, Multi-iteration
Combined Methods

Let us next study a class of multi-iteration, combined methods. Consider
a set of equations formed by using a memory of the function and its derivative
at only equispace intervals, but, during a cycle of compubation, predicting
and correcting at several arbitrarily placed intermediate points. The anal-
ysis of such a process is rather simple and shows the connection between the
classical predictor-corrector methods and methods for multiple numbers of
steps and iterations.
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Assume that values of u and u' have been computed or given at the k
equispaced points hn, h(n+ 1), . . ., h(n+ k - 1) as in sketch (f). We
seek to advance the solution one step

. Memory R to the point h(n + k). We permit

ourselves up to four iterations, or

Ty —b three correctors, but we allow for
TP the possibility of evaluating the

function and its derivative the first
three times at the points h(n + ry),
h(n + rs), and h(n + rs), where the
n n+! k! ek r values need not be integers or

Forgotien after {mﬁ " even lie in the interval between
cycle of computation n+ry
n+k-1and n+ k. A set of
Sketeh (f) expressions for four fundamental
families can be written:
( ) k+1
1 ] 1
Uptp, = }: (ajun+J + ajhun+J) (12ka)
j=2
(2) (1)
2 % (1) 1 1
Untr, = Biuntr, + }: (Bsuptg + Bihuntg) (124b)
J=2
2 k+1
(3) L e () .
Untrz = 73untrs + (7 sunsg + 7 5huneg) (12ke)
j=1 j=2
] k+1
% (J) ! N 1 1
un+k = ajurﬁ—rj + (6j\un+J + thun—l-J) (lgll-d)
J’.—_l j:g

Equations (124) require four iterations per cycle of computation. All
the Tollowing analysis applies directly to three-iteration, incomplete,

combined methods if N N
aj""@':Bl:?’f:Sl:O

and families 2 and 3 are replaced by 1 and 2, respectively. The two-
iteration case follows by further reduction from the top.

The incomplete, uncombined, predictor-corrector methods discussed
previously are obtained from equations (124) by setting ry = k. Classical
Runge-Kutta methods result if the memory is set equal to zero for j > 2.
Specifically, the standard, fourth-order, Runge-Kutta method results when
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(1) k=1
1
() ra=r2=35,1r3=1

A detailed discussion of this method is presented in the next section of this
part.

The matrix equation for the combined, incomplete methods defined by (124)
follows exactly as it was developed in the previous parts. Extending the
notation in equations (81) to include terms with 7 and 5, we find

r A

! 0 0 Cq ugl) 7y
“AnpYE"? g2 0 o |]ul® prhTL | py

2

A FETT Ay EE 2 B3 -Cy Wl | o apgtbn Z VEé*hrJ' + F,
=

AnBYETL OwmstET2 wmsiET® O EF - cgl | g Z Sgeuhr 5+
L I i

. (125)"
Now if we seek only u,, each term E J common to a column can be factored
out; and, regardless of the choice of rj, the operational form has only
integer exponents of E. Using stralghtforward algebraic manipulations, one
can derive the expressions defined in equations (52) .

k+1 5
DE(E) = EX - 7 B 7 Ly (N) ™7 (126a)
j=2 m=1
3 4-m k+1 4
NU = h(p - A) 7 (n) ™t > Riﬁje“hrj + 7 eHB 7 Ry (An)" ™ | (126D)
=1 j=1 j=2 m=1

The coefficients in the operational form are

* _ % A
le - 63
* ¥*
Ry = 8371 + 0281 (1278)
RE, = 8%y%
RE: = 8%y5p)
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Rag = 8)

Roj = aj8Y + Bjss + 7583
T % %
Raj = aj(Biss +7¥88) + Bjrada

1 * o %
Rej = a3Bl7583 )

Lry = %

* * *

Lpj = Rij + o381 + Bs3d2 + 7503
oK * K
Lsj = Rpj + o3(BY82 + 7183) + Byyads

*
Lej = Rajy + w3jP1y20s

sy = Re

They can be inverted (provided
expressions
*
B

*
71
7%

*
83

b
73

1
83

J

(127D)

(1271¢)

R3., Ris and R¥s are not zero) to form the

* *
= (Rsj3 - Ot':ijl)/Rze

¥ %
R31/Roz ]

%
(Rél - BfRiz)/Rls
R25/Ris

*
le

(Laj - Raj)/R31

(Lsj - Rzj - @jRz1)/R3z

(Lej - Biy - @3B11 - BjRiz)/Ris

Llj

sz/Rél

* %
(Rzj - OL5311 - B&Rlz)/Rfs

le J

(128)

(129)

(130)

Again we use equation (58) to calculate the error in the particular
solution. Expanding the numerator in powers of Ah we find the conditions
for making the coefficients to (Ah)Y vanish for J = O,
Lsjy = R4j, the coefficient to (7\h)4 is identically zero.
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k+1 3
2 [z (k+1-3)° —lle+(k+l—j)ZLlj:l+z ng‘lRfj =0 ,

J=2 J=1
1=0,1, ..., L (131)
k+1 3
A 1-1 1 N ow, o Ty
1(kt1-3)" Rpjt(k+l-3) " (Loj-Rij) -Z riR1j-lry RZ;|=0,
J=2 J=1
1=0,1, . . .,L-1 (132)
k+1 2
N 1-1 Ny 1 -1
Z [Z(k+l—3) Rgj+(kt+1-3) " (Lsj-Ra3) } Z {rjagj -1r 5 Réj}o s
J=2 J=1
1=0,1, . . .,L -2 (133)
e
N 0-1 AL 1%
211[1(k+1—a) Raj+(k+1-J) (L4j—st{}- r1R3:=0,
bt
J 1 =0, 1, , L -3 (134)
These are the accuracy conditions for equations (124). Once more one can show

that both the particular and complementary solutions are fit locally by poly-
nomials of order L if the above conditions are satisfied._ Except for the
addition of one more term (which is multiplied by %Sha(uh)L“2/(L—3)l) the
value of er is determined just as in the discussion under equation (117¢c).
The error in the complementary solution is

1 k+1
er, = (7\—?2— z[(k+l-j)ZLlj+Z(k+l—j)z_ngj+Z(Z—l)(k+l—j)z—2L3j
=2
k{%
+z(2—1>(1—2)(k+l—j)z‘3L4j+z(z—1)(1—2)(z—é)(k+1—j>z'”‘sz]—kZ (3-1)Ta 5
Jj=2

(135)

To compare with other methods all error terms should be expressed in terms of
the representative step H where

h = 2H

since four iterations are made to advance one step h.

79



Accuracy of the Standard Fourth-Order Runge-Kutta Method

The standard Runge-Kutta formula (see, e.g., ref. 17) can be written in
the predictor-corrector notation used in equation (124). It is

1 1
Upto.5 = Up + 5 hup

(2) 1 ()
Upt+o.5 = Up *+ §'hun+o.5

(136)

3 (2)
u51+1 =up * 2<j h lunto.s

(1)
= 1
Unptr = Up + _< >[un+l + 2611%0 5 + Unto. 5> + un}

If %-h is replaced by h, n+ 0.5by n+ 1, and n+ 1 by n+ 2, these

equations are immediately recognized in predictor-corrector terminology to be
an Euler predictor, an Euler corrector, a Nystrom predictor, and a Milne
corrector, respectively. Families (1), (2), and (3) are not so accurate as
the final family and are discarded at the end of each cycle of computation.

When equations (124) and (136) are compared, it is clear that

rl=r2=2

i
et

rs

and the coefficients in the difference-differential equations are

Ao =B =72 = 0 =1

G‘é::%) B =72=0, 6é=%
Bt = 2 (137)
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The coefficients in the operational form are

m | Ime | Rmy | Rps | Brs | Rme

RN

3 31886

111 1

21 " 16 ]¢% 3
A L (138)

3 2 |12 i)

1 1

e o

5 | 51

The error terms are easily calculated. Making use of equation (99), one
finds for the error in the particular solution

e S R W OAZ - 3003 (1
erpy = —y@g_ M - 0N 1 - 3071 39)

and for the error in the complementary solution

S5
er) = 2L (140)

Notice that the fourth-order Runge-Kutta method i1s more accurate as a simple
integrator (A = 0, er, = -(uH)>/180) than it is as a differential analyzer

(up = 0, er) = 24(AH)>/180). On the basis of lowest order error estimates
(since all methods are referenced to H, they are directly comparable) it is
not so good as Hamming's unmodified method (table II(b)), and a full order

of magnitude worse than Hamming's modified method (table II(c)). But, of
course, when expressed in fundamental families, these are four- and five-step
methods, respectively. It is comparable in accuracy (46/180 x 0.255) to a
three-step, Adams-Bashforth-Moulton, predictor-corrector combination

(table II(b)).

Stability of Runge-Kutta Methods

The fourth-order Runge-Kutta approximation to the complementary solution
of the representative equation can be constructed at once from (138) and is

l.2,2 l.33 _ 1 422 _
{E—l—?\h—27\h —6'7\h 5)1‘?\1’1}111’1~O

There is only one root, the principal one. At first, it might seem that
stabllity is not an issue in such a method since there are no spurious roots
and the principal root approximates M yhich certainly falls on or inside
the unit circle for negative A and small enough h. However, if we consider
the accuracy and stability criterion given by conditions (7hb), the question
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of stability again arises, even for one-root methods. In fact, in cases for
which this criterion holds (i.e., when a negative eigenvalue in a set of dif-
ferential equations has a large absolute value relative to those that are
driving the system), the principal root itself may determine the stability

boundarz.

The variation of the principal root in the viecinity of the unit circle
is shown in figure 10 for these one-root, one-step methods. In each case the
points are separated by an increment of 0.1 in h, and |%| = |el® = 1. One
reference value of h 1s given in each set of points so guantitative esti-
mates can be made. As indicated, w varies from n/2 te r in steps of ﬁ/lO.

Figure 10(a) shows the principal root behavior for
A =1+ An+ %-%Zhg

which results from the method formed by combining an Euler predictor with a
modified Buler corrector. Such a method is self-starting and extremely easy
to program. It is often used in exploratory numerical research. For real
negative A the method is seen to be stable for 0 < -Ah = -NH < 2. TFor
imaginary A, however, the principal root actually falls outside the unit
circle for all f%h[ > 0. For imaginary A and h < 0.5 the method is accu-
rate enough so that wmore than 200 steps would be required for the instability
to become serious for most cases. Nevertheless, strictly speaking, its sta-
bility boundary is zero and, as a completely general method, it should be
used with caution. (It is unsatisfactory, for example, for studying problems
containing high-frequency, low-amplitude noise.)

Figure 10(b) shows the principal root behavior for
A =1+ An o+ %-x2h2 + %-xshs

which results from third-order Runge-Kutta methods (e.g., Heun's method, see
ref. L4, page 236). TFor real negative A this method is stable for

0 < -Ah = -1.5AH < 2.5. Now when A is imaginary the principal root falls
inside the unit circle until h a~ 1.7. This method has the stabllity boundary

[Mn]e = |1.5M]e = 1.7.
Finally, figure 10(c) shows the behavior for
- 1,22, 1,33 1 44
A =1+ Ah + 5 ATh= + 6-% h= + EE-A h
which results from the standard, fourth-order Runge-Kutta method represented
by equations (136). This method shows excellent stability for all complex A.

For real negative A the method is stable for -Ah = -2AH < 2.8. The worst
case occurs when w a 0.8r and limits the stability boundary to

I?\hlc = l27\H|C = 2.6.

In conclusion, the fourth-order Runge-Kutta method is accurate, easy to
program, has a higher stability boundary (even when compared on the basis
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of H) than any of the predictor, one-corrector combinations given in table I,
and presents no problem in starting or step modification. For many practical
purposes 1t is quite satisfactory.

The Four Iteration, One-Step Incomplete Method in General

In the simple one-step method the equation for the error in the comple-
mentary solution, equatlon (135), takes a remarkably simple form. Noting from
the derivation that (0)° = 1, we see that if er) = 0(h>), we must have

N =
Lmz—(m_l),‘ m=1, . . ., 5 (1k1)

regardless of the choice of any of the other parameters. These values of
Lys are the first five coefficients of xJ  in the expansion of eX. Hence,
er) 1is always given to the lowest order by

Ah)S 5
ery = ( 52 = EHEQS) (1L2)

regardless of the choice of the sampling points ri, rz, and rz. This proves
that there exists in equatlons (12L) no other one-step, incomplete four-
iteration method that is more accurate than the standard, fourth-order Runge-
Kutta method (given by egs. (136)) in calculating the complementary solution.
There can be improvements in the accuracy of the particular solution, but,
since equations (139) and (140) show the error in the complementary solution
is nearly the largest, methods that provide these improvements are of limited

interest.

Multistep, One-Iteration, Complete Combined Methods

In this part let us consider the multistep form of the methods described
above as methods La and Yb. These methods are both complete and combined,
but are easy to analyze and instructive.

In terms of fundamental families, the difference-differential equations
for the multistep form of method lLa are

-~

k+1

() o (1)
Upsrpy = Q,J' Un+J + QJJ' hun_|_r+l _J‘
j=2

(143)

(l t
Untk = hﬁlun+r Z <B sUn+J + thur(1+1)ﬂ+1 J> J

J=2
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Inserting equation (37) and using operational notation, one can show

[ k+1 k+1 10 [+ ]
Ebkf-thZ%f -}j%f uQ) E:%&m
j=2 j=2 j:.g

- Ahephneuh(r-k)

k41 k+1 k+1
-k rJ k ) " uhd
—Er A\h Z BJE E - Z BJE Up Bje“'
. j=l j= a4 = g Lj= -
(1Lk)

Compare this with equation (90). If Ej and B: are set equal to zero, and
the bars are deleted from the primed terms, thé equations are identical except
for the term E' ™ multiplying the left column and the term eMh(T-k) multi-
plying the entire right-hand side. The characteristic equations for the two
methods differ only by the factor Er'k, which means that for given values of
& and B, the roots are identical. Further, if we solve only for the final
family, the factor E* % has no effect on the particular integral, since it
appears in both the numerator and denominator of the solution. Finally, the

term éih(r_k) simply multiplies the particular integral, so the complete
solutions to equation (1LL4) can at once be written from the analysis of
equation (90); there results

2k+1 k+1
Ezk _ }z (Iaj + %hsz)E2k+l'3 uy = hAé*hn }z leeuh(k+r+1-j) (1145)
Jj=2 J=
where
Lij = B3 » j=2,k+1 |
Rij = Bﬁ s =1, k +1 (146)
Jj-1
Lpjy = aj + Broj + Z(Biajﬂ_i - aiBier-i) » =2, 2k + 1
i=2

The inverted equations, giving « and B in terms of L and R, are the simul-
taneous, linear equations in (9k).

The only influence of 1r is contained in the exponent of e
right-hand side of equation (145).
the results.
fit of order

in the
However, this has a profound effect on
The equations which must be satisfied for a local polynomial
L are now
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k+1
E: [Z(k +r+ 1 - j)Z'lle + (2k + 1 - j)ZLlj] -(2x)" =0,

J=1 1=0,1, ..., L (1472)

E: [(2k + 1 - j)Zsz -Ryg(k+r+ 1 - j)z} =0,
j=1 1=0,1, .. .,L -1 (1k70)

instead of (66) and (67), respectively. The errors are given by evaluating
the left side of equations (147) when they are no longer zero and substituting
the results for the terms inside {} in equations (64) and (65).

To get some idea of the effect of r on the accuracy and stability, one
can construct tables for the coefficients of L and R for k = 2 and compare
them with table ITI. Thus for equations (147) with k = 2:

erys
I R Rz Ras Lip his (BT
0 0 0 0 101 1
1 1 1 1 3 2 N
2 2(2+r)  2(1+r)  or 9 L 16

5 5(2+r)* 5(1+r)* s5r* 243 32 1024

ery, o
! Loz Lpz Lga Los Ril Riz Ris
0 1 1 1 1 1 1 -v,l
1 3 2 1 0 2+r 1+r r
2 9 b 1 0 (2+r)2 (1+r)2 12
3 27 8 1 0 (o+r)® (1r)® 2
L 81 16 1 0 (2+r)®* (14r)* *
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Note that this table reduces to portions of table IIT when r =2.
is not constructed, since it is still true that

ern

When

E* - B2(Iyo + Ahlss) - B2(Ins + Mlos) - A[LoaE + Los]

A table for

ery = ery when A =p.

k = 2, the characteristic equation for (1LkL) is

o} (148)

and the stability at Ah = O is given by the roots to the quadratic

Efz - I{Lglg = I{LB =0

If we satisfy equations (1k7) for

and 2.0, we can construct the curves for

figure 11. The error expressed by erys
04— o— )
(wh)3 s ' T kS
—04 f t -8 f [
16 18 20 16 18 20
r r
10— 4
Ly ol hh), 2—
10 | | ol _J
16 18 20 16 18 20

Figure 1l.- Variation of terws controlling stability
and accuracy of ~ethods given by equations (1L3).

L = I and various

(1k9)

r values between 1.6
Li3, ery1, and ery, o shown in
completely dominates the accuracy

of the method and varies from about

-O.l??\;L‘J’h5 at r = 2 to about
1.30%h® at r = 1.6. The varia-
tion of ery shown by the solid curve

is derived using only the first term
in the truncation error. The actual
values of erpx10° (for Ah = 0.1),
plotted in the circles, indicate that
the first term in the truncation error
is accurate for values of Ah = 0.1
and lower. At around r = 1.635, Ins
goes to zero and the three spurious
roots all lie on the origin when

Ah = 0, giving Adams-Moulton type
stability. The critical stability
boundary %h|c, see (73), is around
0.3 when ILis 1is zero. This boundary
is determined from plots such as those
shown in figure 12.

All things taken into considera-
tion, the value r = 1.635 appears to
be a good compromise for this method.

Tf we reference the accuracy and stability to H (= 2h) -- according to

equation (99) -- we find

4
1 H 1 4.5 44135
|eru‘ zgo—il—6i> = Eg-)\u H> ~ 0.0208N.*H

The coefficients in the operational form are, again for

(150)

(151)

r = 1.635
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Figure 12.- Typical stability plots for two-step form of equations (143).
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SR —
J 2 3 L 5
0.98446029 | 0.01553971 0 0

> |2.29749376 | -2. 44603026 |1.538428kY | -0. 371435229

wl _ Ea
J_ _ 1 2 3 L5

1 |0.84801929 | 0.182L0329 | -0.01488289 | 0

and using equations (9L4), one finds the corresponding difference-differential
equations

(l) (1)' (l 1

Un+l.e3s = + Qouptr + Aaup + Ashupio,eas + 0(alsl’lun-o.3(35
At (l)' 1 (l)' 1 (l !
Unta = Bihun+l.e35 + Boup+i + Bauy + Bzhupio.ess + Bahup_g.36s
(1522a)
where ~
as = -21.44241590 Bo = 0.984L6029
ag = 22.44241590 Bs = 0.01553971
as = 20.L48107725 B1 = 0.8L4801929 (152b)
as = 2.59633865 B = 0.182L0329

Bs = -0.01488289

A proof that method 4b is unstable for O(h5) proceeds along the following
lines. The wmatrix equation for the operational form of the method, as applied
to the representative equation (37), can be written

1 oy & N

T Er-2{E2—(a3+%haé)E-%haé} -asE ugl) Ejajeuh(s-g)
;Aheuhneuh(r—2) J=2

_ET-2{%hB1E2+(33+Ahﬁé)E+thg} E(E-B2)| | up ijﬁseuh(s—j)
- JL Lj=l

(153)

0, reduces to

One can easily show that the characteristic equation, DE(E)

1l

E® - E2(Lys + Ahlpp) - E(Lys + AhLzs) - Ahlips = O (154)
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where I are simple combinations of the a and B. Now the error in the com-
plementary solution is determined by substituting eM for E in equa.-

tion (154) and finding to what order the expanded result does not match the
expansion of e R jtself. This simply amounts to entering table IV for

k = 3 and finding the first row that does not sum to zero. If we are to make
the first five rows all sum to zero, so the order of the error is h%5, all
five values of L are coupletely determined; they must satisfy the equations

~

Iio = -8
Ing = 9

Loo = 17/3 (155)
Lps = 14/3

Ipg = -1/3

regardless of the values chosen for r and R. Using equations (155) and
setting h = 0, we find equation {154) reduces to

E2 +88 -9=(E-L(E+9) =0

which has a violent instability given by the root E = -9,

Two-Step, Two-Tteration, Incomplete,
Combined Methods

The final section of this part 1is devoted to a discussion of methods 2a
and 2b. Method 2a is really a special form of equations (124) when the latter
are simplified to two iterations, or one value of r. Applying the analysis
of those equations, one can show that all methods of type 2a having an error
of 0(h®) have operational coefficients given by (the * has been omitted from
RY, in the following)

J Wy PRy

m e 3 1. r B

1 | 8r -2) 17 - 30r 2 le2(l2 - 9r + ) j2(or® - br o+ 1)
1-2r 1-2r r(l -r)(1 -2r) | (1 -1)(1 - 2r) (1 - 2r)

o |ir - 2) | 2(5 - br) o _2r 2(1 - 1)
1 - 2r 1 - 2r 1 - or 1 - 2r

3 -2r 2(1 - r)
1-2r 1 - 2r

and difference-differential equations given by

o0



(1)

t t ? 1
Up+r = GpUpty + Usup + h(apupt: + asup)

(156a)
Uniz = Baupti + Bsun +l1<biugi% + Bounty + Béug>
where
ap = r3(3 - 2r) Bz = 8(r - 2)/(1 - 2r) ]
ag = (L + 2r)(1 - r)2 Bz = (17 - 10r)/(1 - 2r)
ab = -r2(1 - 1) Br = 2/[r(1 - r)(1 - 2r)] | (156D)
az = r(l - r)2 Bo = 2[4r® - or + U1/[(1 - r)(1 - 2r)]
Bs = -2[2r2 - hr + 11/[r(1 - 2r)]
The leading error terms are
\
[(5r® - 11r + Wp + 5r(1 - r)A]p4ES
erp‘: e e P S e A S A
180[2(2r - 3)]
(157)
_ (2 - 3r)»\%mS
TN E I8o(er - 3) J
and the characteristic equation at h = 0 is given by
(E - 1)<# + l%—f—%gf> =0 (158)

80 the spurious root starts at

Ny = 17 - 1Or
2 -7 Tor

which vanishes at r = 1.7, giving Adams-Moulton type
table of the error terms for various values of v is

stability there. A
included and stability

" ey [ ez er

r U SHS N 45 Moo
2.00 | 0.0056 | -0.0278 | -0.0222
1.90| .00ko | -.0297 | -.0257
1.85| .0030 -.0312 | -.0282
1.80] .0019 | -.0333 | -.031k
1.75| .0003 _3036u -.0361
1.70 | -.0017 fTQF;3A -.0L30
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plots in the same range are shown in figure 13. On inspection, the figure
shows that the choice r = 1.75 gives the most stable numerical method, having
an induced stability boundary |AH|e = 0.6.

Negative Positive A

€1, =0.0040,.%°
eup= - 0.0300° ..

° °

er, = 00030510

er,,= -~ 0.031 At

oo

55
er., =0 0019,

4.5
e, =0 033x"N

ery, = 000035,
er = -0.036 PR

e, ==0 0017,
! 4,5
e ;=004

Symbol N
=] |
. s 256
o e aetimle
o
: o i

Pigure 13.- Stability plots for the method defined by equations (156) .
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Method 2b can be written
(1) o (1)

t ot f
Upty = LzUn+i + h@zurﬁl + agup + TpUnir -1>
(159)
(l) ! =t (l) '

| 1 1 ] -—1
Unt2 = BaUnta +11<F2Un+1 + Baup + Biuptr + 52Un+r-;>

and reduced to the operational form

{E® - E?(Iip + Aalps + AN2hPLags) - E(Ahlps + Ah®Lgsg) - ANhZLes}uy,

= Ahep'hn[ (Rll + 7\hR21)€2p‘h + (ng + 7\hR22) euh
+ 7\}_'1323 +—:—Rlleph(r+l) + ﬁlzephr] (160)
where .
Riy = B2 Ino = B2
. _ —
Riz = Bs Lop = Bp + Tp + apPy
Ty, = B Les = opBy
B B ' , _ (161)
Ris = Bo Loa = Bz - Bolo + Pols

Ies = -Bhas + Bias + Piad
Re1 = Lma e

= 1 1 —t
R L Lag = Booa - Bads
22 = Las

Roz = Ly

The accuracy conditiocns formed by collecting the terms independent of Ah 1in
equation (160) are

1
(un) -1 = 11l 1 1
eTy1 = — Y[lelﬁ-j) +Ryji(r+2-j) _|+2L12-3 > 1=0, 1,
B A
J=t
K1 (162a)
The term corresponding to Z:(j'l)Llj in equations (6L) and (65) is unity.
J=2

The second set of conditions formed when the coefficients to Ah are
collected in equation (166) are
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1 3 2
A(uh - — 1
AT - '_%'ii Z R2j2(3 - j)z T 7 [le(3 - j)z + le(r +2 -3 1
j=1 j—;l
3
+ y Loj(4 - j)Z 1=0,1, . . . (162b)
=

2
The coefficient to (Ah)” in equation (60) is identically zero,

If er is made to be of order h5, then equations (162) provide nine
equations for the ten unknown constants (four a, five B, and r) in equa-
tions (159). Hence, one can calculate the errors ery; and ery, as func-
tions of the parameter r. The result is shown in figure 1L, where we see
that erpz completely dominates the total error except in the region r~1.8,

.004 —

-.004 —

04 —

.02 —

e

-02 —

-04 —

Figure 14.- Variation of terms controlling stability
and accuracy of methods given by equations (159) .
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Notice, from equation (160), that the method has Adams-Moulton type stability
for all r, since at h = 0 the characteristic equation reduces to E(E -1)=0.
If r is set equal to 1.8, we find the following values for L and R

J Lmj Rmg Rmj

m 2 3 4 1 2 3 1 2
720 0 0] 705 ]| 15 0| 375 | -375
2 [-1128 | 1848 0 {1340 | 932 | -64 0 0
3] 1340 932 | -64
Divide by 720

1

720 (%H)S

=.__:L S =
eTy = 735 (nH)> , er) =
and the corresponding set of difference-differential equations

(1)

Upt+l.8 = Unta + ,'?h—s 26811;1_'_1 -+ 22111:1 - 2301-1511())8)
(163)
(1) (1)

h 1
Un+2 = Uptl + E§'<L7un+l + up + 25up+l.s - 25un+o.é>

The error terms for these equations are by far the smallest errors

(1/720 as 0.001k4) for any of the methods considered above. However, there is
the usual sacrifice in stability. TFrom a study of results such as those
given in figure 15, one can calculate the curve for the induced stability

boundary shown in Figure 1Lk. We see that equations (163) are limited by the
stability boundary %XHIC = 0.3.

THE OPERATTONAL FORM

Definition and Discussion

A variety of systems of difference-differential equations have been
analyzed as they applied to the solution of ordinary differential equations.
In every case the method being studied was associated with an equation of the

form
PC;mj(Xh)m‘lEk+l'j> = Ahe“th<%mj(%h)m'leuh(ri+l—j)> (16L4)

where P and Q sywbolize polynomials with terms such as those within the
arguments. In every case this equation was the sole basis for determining the
accuracy and stability of the method. In general, the maximum value of m

is determined by the number of iterations. If a method uses M iterations,
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Figure 15.- Stability plots for equations (160).
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Mpax = M+ 1. The maximum value of j is k + 1, where the interpretation of
k varies according to the type of method. For incomplete, uncombined meth-
ods, such as Hamming's, Adams-Moulton, etc., k 1is the largest step number
used in the predictor or the corrector. In complete, uncombined methods, k

is twice the maximum step number. In combined methods, steps are not neces-
sarily equispaced and k loses its counnection with step number. The term ri
can be replaced with %k 1in the uncombined methods. In the combined ones,
however, ri determines the location at which calculations of the function
and/or its derivative are carried out and these locations are not necessarily
spaced in integer multiples of h.

We refer to equation (164) as the operational form of a numerical method
and to the coefficients Rpj and Lyj as the coefficients in the operational
form. One can show:

1. All linear, difference-differential equations with constant coeffi-
cients have an operational form.

2. Any two such methods with the same operational form have, except for
round-off considerations, the same accuracy and stability and give,
therefore, except for round-off considerations, identical numerical
results when applied to equations (11).

3. The coefficients o, B, 7, . . . in the actual difference-
differential equations affect the accuracy and stability of the
method only as they affect the coefficients in the operational form
and the correspondence is not unique.

Let us consider in more detail the above statement number 2. Strictly
speaking, two methods that give identical numerical results when applied to
linear equations cannot be classified as equivalent, since one can require
more iterations than the other. As an example, the incomplete, four-step
method.

(1)

Up+a = 3.9up+3 - 5.Tuntze + 3.Tupty -~ 0.9upn

(165)
(1)

_ h © 8ut 1
Un+4 = Un+s + 75 Sup+e  + OUpes - Unts

when applied to equations (11) gives results!® that are identical with those
of the complete two-step method presented in (96). Notice that the number of
multiplications and storage requirements of the two methods are the same.
However, the use of equations (165) requires twice the number of iterations

and for this reason, as a numerical method, is neither equivalent nor
practical.

1570 show this numerically, care must be taken with the initial
conditions since neither method is self-starting.




Accuracy

The accuracy which a given operational form provides in the solution of
a set of linear differential equations can be measured by the magnitude of the
error terms ery, defined by equations (63) and (57); and by the error term
er) where er) = (eru)u=%. We are concerned only with polynomial approxi-
mation, so these terms are expanded in powers of h and the lowest power of
h with a nonvanishing coefficient gives the order of the local polynomial

fit.

Clearly, the parameters u and A depend on the differential equation,
so the error of any method must be expressed as a function of u, A, and h.
First, we notice that the error in the particular solution can always be
expressed as a polynomial in Ah. Collecting terms in this way, we pext see
that the coefficlents of this polynomial are functions of uph and eflkh),
Finally, these coefficlents are each expanded in powers of ph and made to
vanish to the desired order. This leads to sets of conditlons on the coef-
ficients in the operational form, examples of which are given in
equations (66), (67), and (131) through (134).

Stability

In this part we show that the Dahlquist stability thecorem, derived for
an implicit multistep equation, also holds for any multistep, predictor-
corrector method contained in equation (164), provided =i = k. That is,
provided equispaced, predictor-corrector methods are not combined with Runge-

Kutta techniques.

The argument starts by inspecting equations (3) and (4). As we have
seen, the degree of the polynomial embedded in equation (3) depends upon how
many of the terms erp(O), erp(l), e e ey erp(L) in equation (4) can be made
identically zero. If, in fact, the B values are chosen so all terms
through erp(L) are zero, L + 1 equations or constraints on B must be satis-
Tied and the order of the embedded polynomial is L. On this basis, the
maximum value of L 1s twice the step number. The stability, on the other
hand, depends on the roots to the characteristic equation derived from

equation (3), namely,

k+1
B - Z (85 + NBy)E =0 (166)
J=1

The Dahlquist theorem is based on the hypothesis that, for a method to be
stable, it 1s necessary that the roots to the characteristic equation lie on
or inside the unit circle in a complex plane when h = 0. In our notation
and analysis, these statements mean that L 1s to be made as large as

possible in
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k+1

E: [Z(k +1 - j)Z'lBE + (k+ 1 - j)zﬁj} = ! s 1=0,1, . . ., L (167a)

j=

without having the absolute value of any of the roots to

k+1

B - 7 BjEk“’J =0 (167b)
A
j=2

exceed unity. The Dahlquist theorem states that there are no combinations of
B for which this is possible if L >k + 2 (k even) or L >k + 1 (k odd).

The extension of these results to uncombined methods constructed from an
operational form with r4y = k 1is quite simple. Consider, for example, the
two-corrector method expressed by equations (111). The error, ery,, for such
a method is given by equations (117). For h = O we find a necessary condi-
tion for obtaining a method embedding a polynomial of order L is

k+1

N 1-1 1 2
Z[z(k+1—g) le'f'(k“‘l'J)Llji‘:k’ 1=0, L, - - 5 b (168a)
J=1

and a necessary condition for stability is that the absolute value of the

roots to K1

X - y T =0 (168b)

j=2
does not exceed unity.

Examining the discussion of equations (167), we see that the Dahlquist
stability criterion is quite independent of the role of B 1in the difference-
differential equations. Thus, although L and R of equations (168) can enter
the difference-differential equations entirely differently, the Dahlquist
theorem immediately tells us that only the first k + 2 (for even k, or k+1
for odd k) of equations (168a) can be satisfied if the absolute value of the
roots to equation (168b) is to be no greater than one. Hence, the Dahlquist
theorem still applies to combined predictor-corrector methods when any number
of correctors, all of which may be different, are used in an uncombined,
multistep, predictor-corrector method.

If combined predictor-corrector formulas are used (complete or incom-

plete), ry 1is no longer equal to k. TFor example, equations (124) have, in
place of %168a), the accuracy conditions
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k+1
- 1-1
Z [z(ku-j)l lLlj+(k+1—j)Zle}+ i wi Rii=k’
== i=1 1=0,1, .. ., L (169)

although the stability equation remains identical to (168b). Using the same
argument as above, we see that the Dahlquist theorem is no longer applicable
to these cases.

The fact that the Dahlquist stability criterion must be modified if
unequal steps are taken in advancing the integration of differential equations
has been recorded by several authors, for example, references 13 through 16.
But the variety of meanings given to the words "step number" in these and
other references complicates a comparison of the stability capabilities of
the various methods in a sense similar to that studied by Dahlquist. This
problem,already discussed, is discussed here in light of its connection with
the Dahlquist theorem.

Consider first the "conventional," four-step, method composed of an Adams-
Bashforth predictor (line 5, table I(a)), followed by an Adams-Moulton correc-
tor (line L, table I(b)) as symbolized in sketch (g). (The symbols are
defined in the previous section.)

Predictor Corrector

Sketeh (g)

The data used to calculate the value of the predicted and corrected function
are encircled; the remaining data are ignored, The step size is shown as hg,
the choice which coincides with the definition (123). It is equal to I, the
distance advanced by two iterations. ©Six bits of data are welghted in the
corrector and a stable method results with a local polynomial fit of order
five. The error (see table II(J)) is around -0.12N.5HS.

Consider next the combined, two-step method presented by Butcher in
reference 15. In our notation it reads
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1
Untl.s = Un * g hy(9upsey + 3up)

(2)

Un+2

I

% (28up,, - 23uy,) + i%-hb<%2ugii.5 - 60upy, - 26u;> > (170)

' (2)

1 1 (1)
Upto = ﬁ (32un+l - U.n) + §§ hb<6hun+l.5 + 15upte  + 1211];1+l - u;l>

y,

where hp also coincides with the step size defined by (123). The process
is symbolized in sketch (h). The error of the method is around (Ahp)®/12L

e 77 ——‘ hb/2 [

Sketch (h)

or ~0.06(MH)®, since hp = 3H/2. The increase in accuracy is compensated
for, as usual, by a decrease in the stability boundary.

Although the method illustrated by sketch (h) 1s by definition a two-
step method, it appears very similar to the four-step method shown in
sketch (g). The real connection between the two is discovered by reducing
each to its operational form. For simplicity, re-reference the indexing in
equations (170) to a step size equal to h, so that, for example, the first
equation reads

h |} T
3 - e 2 (ot 3

When this is done one can show that both methods are governed by equa-

tions (168) in which k = 4. Apply Dahlquist's theorem to the latter, and we

find that a local polynomial fit of Qrdgr_5»¢apip§y3§}2}y}§rbe found which
lGActually the theorem states that a local polynomial fit of order 6

would be stable, but such methods would have a spurious root on the unit

circle at h = 0, and are usuvally unstable for h > O,
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is stable for a variety of methods containing, over the length 2hp, the kind
of data shown in sketch (h). Butcher showed that the particular choice of
data encircled in sketch (h) are, in fact, stable for a polynomial of order

5 when weighted as in equations (I?O If the number of steps, sized hp, is
increased to 3, a method similar to that given by equations (170) =- in that
the values of the function and its derivative at the midpoints of steps
behind the last are ignored -- 1s stable according to Butcher for a polynomial
of order 7. However, Butcher also showed that when Xkp, the number of hy
steps, is increased beyond three, this process is unstable for polynomials of
order 2kp + 1. On the other hand, if we use the operational form, the
Dahlquist theorem tells us that some choice of such equispaced data in the
same interval can be used to derive a method that is stable for 2kp + 1L or
even 2k + 2 in the sense described in footnote 16.

Of course, the above example, when used in this perspective, is quite
unfair as a true measure of the value of combined methods. This is due to
the symmetrical choice of the sampling points. But it is quite useful in
demonstrating that the words "step-number,” as they are used in contemporary
literature, are to be treated with great caution in comparing methods.

Perhaps the simplest way to present the basic issue involved is to con-
sider sketch (i). The implicit method defined advances the solution a step
h 1in one cycle of computation and, on this basis,

| | it is a two-step method. The generalization of
h hy Dahlquist's stability theorem will provide an

————L——h__jti: answer to the following question:
& 4 Is there any value of r for which the
;

+ )
I data encircled in sketch (i) can be used
' to construct a stable method embedding
y rh y a local polynomial of order 8%

n n+2

Sketeh (1) Nine bits of data are now available so that a
method having a polynomial fit of order 8 can

easlly be constructed. The Dahlquist theorem, when applied to the opera-
tional form, immediately tells us that the answer to the above question is
negative when 1 = 3/2. If r = M/S, however, thé situvation is not so simple.
Then the data are spaced so as to be identical with operational forms of
certain equispaced methods with six steps. The Dahlquist theorem tells us
that there are some operational forms of such cases that are stable, but
whether or not they can be obtained omitting data at two of the intervals is
not known. Admittedly, questions such as this are approaching the academic,
but their answer is a fundamental aspect to one area of numerical analysis.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 9&035, Jan. 24, 1967
129-04-03-02-00-21
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TABLE I.- COEFFICIENTS IN DIFFERENCE-DIFFERENTTAL EQUATIONS FOR

(&) Predictor formulas

CERTAIN PREDICTOR-CORRECTOR FORMULAS

ay | o as ap as ad oy o as o g o
1 | Buler 1 1 | 1/en2ut?
2 | Nystrom 2 1 1/3n%u
3 | A-B* two-step 3/2 /2 5/12n% 1t
4 | A-B* three-step 23/12 -16/12 5/12 3/8n%u"
5 | A<B* four-step 55/2h -59/2l 37/2k4 -9/2k4 251/720n%u"
6 | Milne-Hauming
(No mod.) 8/3 -4/3 8/3 1 14/L5n50"
7 | Hamming (moad.) 1 8/3 -l L 1 -8/3 -1 | -11/720%"
8 | Crane X 1.547652 | 2.002247 | -1.867503 | -2.031690 | 2.01720k |1.818609 | -0.697353 | -0.714320 0.4016n5u"
9] (0.01, 0.01) -59/17 | 127/3h | 76/17 | 59/3h 3/68n3u 11
10 | Stetter - L 5 2 1/6n%uv
*Adams -Bashforth method
(b) Corrector formulas
— Bl Bl Pa B2 B3 BS Ba | Bk Bs Bs |Ps Bp
1 | Modified Buler 1/2 1 1/2 -1/12n%y111
2 | A-M* two-step 5/12 1 8/12 -1/12 -1/2kn%ulv
3 | A-M* three-step 9/2k 1 19/24 -5/2k 1/2k -19/720n5uV
| b | A-M* four-step 251/720 1 646/720 -26l /720 106/720 -19/720 -3/160n%u"*
5 | Milne 1/3 L/3 1 1/3 -1/90n5u"
6 | Hamming
(No mod.) 3/8 9/8 6/8 -3/8 -1/8 -1/40h>u
7 | Famming (mod.) k2/121 | 126/121 | 108/121| © -54/121 | -1L/121 | 2k/121 | 9/121 -21/1210n%u’*
8 (0.01, -0.01) 34/93 | 12/31 |100/93 |19/31 | 16/93 -1/62nuiv
9 3/11 | -27/11 27/11 | 27/11 27/11 1 3/11 3/1540n7 Wit

*Adams -Moulton method




TABLE ITI.- COEFFICIENTS IN THE OPERATIONAL FORM OF A NUMBER OF METHODS

(a) Predictor, row 6 of table I(a) (Milne-Hamming (no mod.));
corrector, row 5 of table I(b) (Milne)

J Lmj ij
m\[ 2] 3[u][s5]6]|2] 2] 3| u]s5]6
1] o olo| 3,_}fi_Afilf)

2 |12] 3]of3| |o] 8 |-k]8o| |
8l-xi8]o| [ | l_
Divide by 9
er, = (0.0056 - 0,0527H) (uH)®

er\ = 0.0056(N\H)>

(b) Predictor, row 6 of table I(a) (Milne-Hamming (no mod.));
corrector, row 6 of table I(b) (Hamming (no mod.))

3 Y Y
m o 3 Iy slel1 2_}3__1['5 6
119 0]-1 dk 3161-3]101]0
2 [6]-3] o3| [ola|-4[8]o0
81-*1 81°]
Divide by 8
ery = (0.033 - 0.155MH) (uH)?

1l

er) 0.033(AH)°

(¢) Predictor, row 7 of table I(a) (Hamming (mod.));
corrector, row 7 of table I(b) (Hamming (mod.))

J Lmj Rmj
m 2 3 I 5 6 {1 ) 3 I 5 6
1 {126 Of -1k 9 01421108 -54 | 24 0

2 | 150 -su| 4| ue|-ue| o112 |-168 [168 | -112]0
3 | 112 | -168] 168 | -112 0
Divide by 121
(0.0175 - 0.109AH)(uH)®

i

eru

0.0175(NH)®

n

er7\
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TABLE ITI.- COEFFICIENTS IN THE OPERATIONAL FORM OF A NUMBER OF METHODS -

Continued

(d) Predictor, row 3 of table I(a) (A-B two step);
corrector, row 2 of table I(b) (A-M two step)

3 L Py
- 2l 314[5]6]1 {2 [3 |[k]5]6
1 [au] o 10| -2
2 |26| -2 0115{ -5
3 [15] -5 ]

[ Divide by 2k

]

er (0.0h2n - 0.17WA)u3u*

-0.132(AH)*

9
er)y

It

(e) Predictor, row 2 of table I(a) (Nystrom);
corrector, row 2 of table I(b) (A-M two step)

J L, Ruj

Listél1]2 |3 [4]51|6
51 8] -1
10 0

0]
O]l FlO|w

10

Divide by 12

I

(0.0k2u - 0.138\)u3u*
-0.097(AH)*

eru

n

er7\

(f) Predictor, row 9 of table I(a);
corrector, row 8 of table I(b)

J g Rmj
- 2 3 hist16l 1 2 3 L | 516
1 | 1224 | 1938 1156 | 3400 | Sk
612 | 5712 0| 4318 | 2006
4318 | 2006

Divide by 3162

i

0.01(p - A)p3m*
-0.027(AH)>

e I'“'

il

er7\
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TABLE II.- COEFFICIENTS IN THE OPERATIONAI, FORM OF A NUMBER OF METHODS -
Continued
(g) Predictor, row 4 of table I{a) (A-B three step);
corrector, row 2 of table I(b) (A-M two step)

3 T, | Ray
m 2 3 histe | 1| 2 A3 7 fLA 51 é
k|l o] 0 60| 96} -12
5> [156 |-12] o| | [o]115]|-80|2s
s |- |es| | | | '

Divide by 1Lk

(0.042 - 0.156NH) (nH)*
0.042(AH)*

eru

er)\

(h) Predictor, row 4 of table I(a) (A-B three step);
corrector, row 3 of table I(b) (A-M three step)

J L ~ Bmy
m 2 3 4y {sté6l 1 2 3tk {516
288 | ol o| | {108|2e8| 60]12|
> 336 | -60 | 12 | oo [z ns
cor || us | | | |

Divide by 288

I

(0.026u - 0.14IN)u%HS
-0.114(MH)>

eru

er7\

I

(1) Predictor, row 5 of table I(a) (A-B four step);
corrector, row 3 of table I(b) (A-M three step)

3 © Imy  Rpy
aN\] 2 [3 [4 [5][6]1]> N ERE
12| ol ol ol f|72lws2| -wo| 8| ol
ok | w0 | 8] o 01165 | -177 [111 [-27
165 | 77 (1L {27 | | | |

Divide by 192

(0.026 - 0.1317H) (LH)>
0.026(AH)°

It

eru

i

ery)
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TABLE IT.- COEFFICIENTS IN THE OPERATIONAL FORM OF A NUMBER OF METHODS -

Concluded

(3) Predictor, row 5 of table I(a) (A-B four step);
corrector, row 4 of table I(b) (A-M four step)

J : Lmy Rmj
m 2 3 i 5 6] 1 2 3 4 5 |6
1 | 17280 ol o 0 602k | 15504 | -6336 | 254k | -L56
2 | 21528 | -6336| 254k | -456 0 | 13805 | -14809 | 9287 | -2259
3 | 13805 | -14809 | 9287 | -2259

Divide by 17280

(0.019u - 0.122\)uSHS
-0.103(H)®

eru

Il

er)

(k) Predictor, row 10 of table I(a) (Stetter);
corrector, row 5 of table I(b) (Milne)

J Imgj Ry
Lisié6j1]l213|4kl51]6

NV w|w
(@)

=

N

= OO |

Divide by 3

(0.00560 - 0.028\)u*H>
-0.022(H) >

er

il

er7\
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TABLE III.- COEFFICIENTS OF I AND R FOR USE IN THE CALCULATION OF

METHOD

(a) BEquation (66)

ery FOR ONE- THROUGH FIVE-STEP

= Ri1 | Rz Iio

2 Ri1 {Riz2 | Ras Liz | Ina

3 Ri1 | Riz | Ris [ R1a Lo { Ing | Ing

L Ri11 | Riz | Riz [ Ri4 | Ris Lio {lns | Ins | Ins k!
1 5 Ria Riz | Riz |Ri4 [Ris |Rig | Inz | Ins [Ind | Lus| Ine = 21 3 L p)
0 0 o] oj oo 1) 1] 1] 1 1 1] 1 1 1
1| 1 1] 1f1}1 b3 110 1 21 3 L 51
2 | 10| 8| 6| 4| 2] o0 160 9f 4| 11 o0 1 b 9| 16 25 |
3 TS| W 2r] 12] 3 0 6| 27| 8 11 0 1 | 8| 27 64 | 125 |
L 500 | 256 108 32| L 0 | 256 8116 1 0 1 [16] 81| 256 625
5 | 31251280 | L05| 80, 5 | O {102k 2k3(32 | 1| © 1 [32]2Lk3] 102k | 3125
6 18750 1 614k | 1458 192 | 6 0 | k096 729 N 1] 0 1 64729 Lo96 115625 ,




TABLE IIT.- CORFFICIENTS OF L AND R TOR USE IN THE CALCULATION OF ery, FOR ONE- THROUGH FTVE-STEP
METHOD - Concluded

(b) Equation (67)

k=1 ' 1 \ Bi1 - Rz : f’ :: | Rez : ; L [ L2z
2 M ', - -R11 -Rin - Ris ; ' ' Roz | Ros - .E L ' Loo { Lo |
3 - Ri1  Rip - Ris  Ria ‘  Rop | Ros | Ros |~ Ieo Ipa |Lps
b ‘ | Ri1 Ris . Ris * Risa | Ris | | Rzz ' Rps | Roa | Ros | | Lop | Los. | Ipa |Lps |
11 5 1 <Ri1 | Ris - Ris | Risa - Ris | Rie | Roo | Ros | Ros |Ros |Rpg | Los | Les I Tps |Lps | Los |
lo 10 01 1] 1 1|1 o[ o 1 1] 11 |2
[1 50 &1 3| 2 10 1] 1] 1|1 b{ 3 1| o
|2 25| 16+ 9| L 1|0 8 6] 4| 2 |0 16| 9| |1 |o
3 1250 64| 27| 8 1 0 Wl 27| 12| 3 0 6k | 27 | 81 1 0
h 625 | 256 81| 16 1 0 256 | 108 32| L 0 2561 81| 16| 1 0
5 3125 [ 102k | 243 | 32 1 | o [1280] wos5| 8] 5 [ o [1o2kfaeu3] 32| 1 [ 0
6 15625 | 4096 | 729 | 6k 1 0 614k | 1458 { 192 | 6 0 |Loo6 |T729 | 64| 1 0

TTT
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TABLE IV.- COEFFICIENTS OF L FOR USE IN THE CALCULATION OF

(see eq. (72))

er; ONE- THROUGH FIVE-STEP METHOD

= Lyo|Lop| Lz

2 Diz|loz|laz|lns|Les|las

3 Lio|Lles |Iez|Ins |Les |{Ins {Tus| Loa | Ina

L Liz| Lozl Lsz|lis|Lles|les|lna|lsa|lss|lns|las|las k!
1 5 |Lis | Log| Leo|lis| Los! Lss|lna|loa|lsa|lis|los |Las |Ine|Llos|las |k=1} 2] 3 | 4 5
0 0 ol 11 o of 1| of ojrlo}| of1|ojo| 1|1 1 1
1 1| o] 3 1l o] 2 1} of1 {1} oto]|1]oO 12 3 5
2 16 8 2l 9 6 21 4| 4| 21112 2l 0] 0| 2 14 9 16 25 j
3 6] 481 24| 27| o7| 18| 8| 12] 12| 1| 3 6|l o0 O 1] 8] 27] 64| 125 |
b 256| 256} 192] 81| 108| 108| 16| 32| WB| 1 ] 4 ] 12] 0] 0] O T 116] 81 256 625 |
5 1024|1280 [1280 (243 | LO5| 540| 32| 80[160| 1 | 5 | 20/ 01 0 ] O 1 }32‘2435102u 3125 |
6 4096|614k 17680729 |1458|2430] 6L |192480| 1 | 6 | 30/ 0 | O | O 1‘l6”,7295”096' 15625@
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